Matrix metalloproteinases and the regulation of tissue remodelling.
Journal: 2007/March - Nature Reviews Molecular Cell Biology
ISSN: 1471-0072
Abstract:
Matrix metalloproteinases (MMPs) were discovered because of their role in amphibian metamorphosis, yet they have attracted more attention because of their roles in disease. Despite intensive scrutiny in vitro, in cell culture and in animal models, the normal physiological roles of these extracellular proteases have been elusive. Recent studies in mice and flies point to essential roles of MMPs as mediators of change and physical adaptation in tissues, whether developmentally regulated, environmentally induced or disease associated.
Relations:
Content
Citations
(760)
References
(175)
Grants
(5)
Conditions
(1)
Chemicals
(1)
Organisms
(2)
Processes
(6)
Anatomy
(3)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Nat Rev Mol Cell Biol 8(3): 221-233

Matrix metalloproteinases and the regulation of tissue remodelling

Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA
Department of Anatomy and Program in Biomedical Sciences, University of California, San Francisco, California 94143-0452, USA
Andrea Page-McCaw: ude.ipr@amegap; Andrew J. Ewald: ude.fscu@dlawe.werdna; Zena Werb: ude.fscu@brew.anez
These authors contributed equally to this paper.
Andrea Page-McCaw: ude.ipr@amegap; Andrew J. Ewald: ude.fscu@dlawe.werdna; Zena Werb: ude.fscu@brew.anez

Abstract

Matrix metalloproteinases (MMPs) were discovered because of their role in amphibian metamorphosis, yet they have attracted more attention because of their roles in disease. Despite intensive scrutiny in vitro, in cell culture and in animal models, the normal physiological roles of these extracellular proteases have been elusive. Recent studies in mice and flies point to essential roles of MMPs as mediators of change and physical adaptation in tissues, whether developmentally regulated, environmentally induced or disease associated.

Abstract

The founding member of the matrix metalloproteinase (MMP) family, collagenase, was identified in 1962 by Gross and Lapiere, who found that tadpole tails during metamorphosis contained an enzyme that could degrade fibrillar collagen12. Subsequently, an interstitial collagenase, collagenase-1 or MMP1, was found in diseased skin and synovium3. In vitro, MMP1 initiates degradation of native fibrillar collagens, crucial components of vertebrate extracellular matrix (ECM), by cleaving the peptide bond between Gly775–Ile776 or Gly775–Lys776 in native type I, II or III collagen molecules34. Further research led to the discovery of a family of structurally related proteinases (23 in human, 24 in mice), now referred to as the MMP family.

Interest in MMPs increased in the late 1960s and early 1970s following observations that MMPs are upregulated in diverse human diseases including rheumatoid arthritis and cancer. Importantly, high levels of MMPs often correlated with poor prognosis in human patients (reviewed in REF. 5). However, recent clinical data indicate that the relationship between MMPs and disease is not simple; for example, increased MMP activity can enhance tumour progression or can inhibit it (reviewed in REF. 6). This complex relationship between MMP expression and cancer has increased the basic and clinical interest in understanding MMP function in vivo, but it has also focused attention on MMPs and pathology, and relatively less attention has been focused on the normal roles of these enzymes. Surely we do not have 23 MMPs in our bodies just to promote tumours. A main question remains unanswered: what is the normal function of the MMP gene family in development? This Review focuses on what we have learned about the normal in vivo functions of MMPs from genetic analysis.

Footnotes

Competing interests statement

The authors declare no competing financial interests.

DATABASES

The following terms in this article are linked online to:

Entrez Genome:http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

DmMmp1 | DmMmp2

UniProtKB:http://ca.expasy.org/sprot

MMP1 | MMP2 | MMP3 | MMP9 | MMP14 | MMP15 | MMP16 | MMP17 | MMP23 | MMP24 | MMP25

FURTHER INFORMATION

Andrea Page-McCaw's homepage:www.rpi.edu/research/biotech/researchers/page-mccaw.html

Zena Werb's homepage:http://anatomy.ucsf.edu/Pages/werb.html

International Proteolysis Society:hhttp://www.protease.org

MEROPS:http://merops.sanger.ac.uk

Footnotes

References

  • 1. Gross J, Lapiere CMCollagenolytic activity in amphibian tissues: a tissue culture assay. Proc Natl Acad Sci USA. 1962;47:1014–1022.[Google Scholar]
  • 2. Brinckerhoff CE, Matrisian LMMatrix metalloproteinases: a tail of a frog that became a prince. Nature Rev Mol Cell Biol. 2002;3:207–214.[PubMed][Google Scholar]
  • 3. Birkedal-Hansen H, et al Matrix metalloproteinases: a review. Crit Rev Oral Biol Med. 1993;4:197–250.[PubMed][Google Scholar]
  • 4. Welgus HG, Kobayashi DK, Jeffrey JJThe collagen substrate specificity of rat uterus collagenase. J Biol Chem. 1983;258:14162–14165.[PubMed][Google Scholar]
  • 5. Egeblad M, Werb ZNew functions for the matrix metalloproteinases in cancer progression. Nature Rev Cancer. 2002;2:161–174.[PubMed][Google Scholar]
  • 6. Coussens LM, Fingleton B, Matrisian LMMatrix metalloproteinase inhibitors and cancer: trials and tribulations. Science. 2002;295:2387–2392. A critical analysis of why MMP inhibitors failed as cancer therapeutics, despite great promise. [[PubMed][Google Scholar]
  • 7. Stickens D, et al Altered endochondral bone development in matrix metalloproteinase 13-deficient mice. Development. 2004;131:5883–5895.[Google Scholar]
  • 8. Oh J, et al Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice. Oncogene. 2004;23:5041–5048.[PubMed][Google Scholar]
  • 9. Ducharme A, et al Targeted deletion of matrix metalloproteinase-9 attenuates left ventricular enlargement and collagen accumulation after experimental myocardial infarction. J Clin Invest. 2000;106:55–62.[Google Scholar]
  • 10. Rudolph-Owen LA, Hulboy DL, Wilson CL, Mudgett J, Matrisian LMCoordinate expression of matrix metalloproteinase family members in the uterus of normal, matrilysin-deficient, and stromelysin-1-deficient mice. Endocrinology. 1997;138:4902–4911.[PubMed][Google Scholar]
  • 11. Bode W, Gomis-Ruth FX, Stockler WAstacins, serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the ‘metzincins’ FEBS Lett. 1993;331:134–140.[PubMed][Google Scholar]
  • 12. Stocker W, et al The metzincins--topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a superfamily of zinc-peptidases. Protein Science. 1995;4:823–840.[Google Scholar]
  • 13. Rawlings ND, Morton FR, Barrett AJMEROPS: the peptidase database. Nucleic Acids Res. 2006;34:D270–D272.[Google Scholar]
  • 14. Overall CMMolecular determinants of metalloproteinase substrate specificity: matrix metalloproteinase substrate binding domains, modules, and exosites. Mol Biotechnol. 2002;22:51–86.[PubMed][Google Scholar]
  • 15. Maskos KCrystal structures of MMPs in complex with physiological and pharmacological inhibitors. Biochimie. 2005;87:249–263.[PubMed][Google Scholar]
  • 16. Sternlicht MD, Werb ZHow matrix metalloproteinases regulate cell behavior. Annu Rev Cell Dev Biol. 2001;17:463–516.[Google Scholar]
  • 17. Streuli CExtracellular matrix remodelling and cellular differentiation. Curr Opin Cell Biol. 1999;11:634–640.[PubMed][Google Scholar]
  • 18. Giannelli G, Falk-Marzillier J, Schiraldi O, Stetler-Stevenson WG, Quaranta VInduction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science. 1997;277:225–228. Demonstration that cleavage of an ECM protein reveals a cryptic function, in this case chemokinesis. [[PubMed][Google Scholar]
  • 19. Xu J, et al Proteolytic exposure of a cryptic site within collagen type IV is required for angiogenesis and tumor growth in vivo. J Cell Biol. 2001;154:1069–1080.[Google Scholar]
  • 20. Pilcher BK, et al The activity of collagenase-1 is required for keratinocyte migration on a type I collagen matrix. J Cell Biol. 1997;137:1445–1457.[Google Scholar]
  • 21. Fowlkes JL, Thrailkill KM, Serra DM, Suzuki K, Nagase HMatrix metalloproteinases as insulin-like growth factor binding protein-degrading proteinases. Prog Growth Factor Res. 1995;6:255–263.[PubMed][Google Scholar]
  • 22. Whitelock JM, Murdoch AD, Iozzo RV, Underwood PAThe degradation of human endothelial cell-derived perlecan and release of bound basic fibroblast growth factor by stromelysin, collagenase, plasmin, and heparanases. J Biol Chem. 1996;271:10079–10086.[PubMed][Google Scholar]
  • 23. Wang Z, Juttermann R, Soloway PDTIMP-2 is required for efficient activation of proMMP-2 in vivo. J Biol Chem. 2000;275:26411–26415.[Google Scholar]
  • 24. Luo D, Mari B, Stoll I, Anglard PAlternative splicing and promoter usage generates an intracellular stromelysin 3 isoform directly translated as an active matrix metalloproteinase. J Biol Chem. 2002;277:25527–25536.[PubMed][Google Scholar]
  • 25. Peschon JJ, et al An essential role for ectodomain shedding in mammalian development. Science. 1998;282:1281–1284.[PubMed][Google Scholar]
  • 26. Suzuki M, Raab G, Moses MA, Fernandez CA, Klagsbrun MMatrix metalloproteinase-3 releases active heparin-binding EGF-like growth factor by cleavage at a specific juxtamembrane site. J Biol Chem. 1997;272:31730–31737.[PubMed][Google Scholar]
  • 27. Montero JC, Yuste L, Diaz-Rodriguez E, Esparis-Ogando A, Pandiella ADifferential shedding of transmembrane neuregulin isoforms by the tumor necrosis factor-α-converting enzyme. Mol Cell Neurosci. 2000;16:631–648.[PubMed][Google Scholar]
  • 28. Sternlicht MD, et al Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development. 2005;132:3923–3933.[Google Scholar]
  • 29. Noe V, et al Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci. 2001;114:111–118.[PubMed][Google Scholar]
  • 30. Kajita M, et al Membrane-type 1 matrix metalloproteinase cleaves CD44 and promotes cell migration. J Cell Biol. 2001;153:893–904.[Google Scholar]
  • 31. Endo K, et al Cleavage of syndecan-1 by membrane type matrix metalloproteinase-1 stimulates cell migration. J Biol Chem. 2003;278:40764–40770.[PubMed][Google Scholar]
  • 32. Li Q, Park PW, Wilson CL, Parks WCMatrilysin shedding of syndecan-1 regulates chemokine mobilization and transepithelial efflux of neutrophils in acute lung injury. Cell. 2002;111:635–646.[PubMed][Google Scholar]
  • 33. Senft AP, Korfhagen TR, Whitsett JA, Shapiro SD, LeVine AMSurfactant protein-D regulates soluble CD14 through matrix metalloproteinase-12. J Immunol. 2005;174:4953–4959.[PubMed][Google Scholar]
  • 34. Mohan R, et al Matrix metalloproteinase gelatinase B (MMP-9) coordinates and effects epithelial regeneration. J Biol Chem. 2002;277:2065–2072.[PubMed][Google Scholar]
  • 35. Yu Q, Stamenkovic ICell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-β and promotes tumor invasion and angiogenesis. Genes Dev. 2000;14:163–176.[Google Scholar]
  • 36. Vu TH, et al MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell. 1998;93:411–422. First MMP-null mutant with a tissue-remodelling phenotype and defects in development and angiogenesis. [Google Scholar]
  • 37. Colnot C, Sidhu SS, Balmain N, Poirier FUncoupling of chondrocyte death and vascular invasion in mouse galectin 3 null mutant bones. Dev Biol. 2001;229:203–214.[PubMed][Google Scholar]
  • 38. Ortega N, Behonick DJ, Colnot C, Cooper DN, Werb ZGalectin-3 is a downstream regulator of matrix metalloproteinase-9 function during endochondral bone formation. Mol Biol Cell. 2005;16:3028–3039.[Google Scholar]
  • 39. Colnot C, Thompson Z, Miclau T, Werb Z, Helms JAAltered fracture repair in the absence of MMP9. Development. 2003;130:4123–4133.[Google Scholar]
  • 40. Inada M, et al Critical roles for collagenase-3 (Mmp13) in development of growth plate cartilage and in endochondral ossification. Proc Natl Acad Sci USA. 2004;101:17192–17197.[Google Scholar]
  • 41. Little CB, et al Matrix metalloproteinases are not essential for aggrecan turnover during normal skeletal growth and development. Mol Cell Biol. 2005;25:3388–3399.[Google Scholar]
  • 42. Holmbeck K, et al MT1-MMP-deficient mice develop dwarfism, osteopenia, arthritis, and connective tissue disease due to inadequate collagen turnover. Cell. 1999;99:81–92. Demonstration that loss of an MMP decreases ECM remodelling with the surprising consequence of increased bone loss and arthritis; previously these phenotypes were thought to be the consequence of excess proteolysis. [[PubMed][Google Scholar]
  • 43. Zhou Z, et al Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc Natl Acad Sci USA. 2000;97:4052–4057.[Google Scholar]
  • 44. Ohuchi E, et al Membrane type 1 matrix metalloproteinase digests interstitial collagens and other extracellular matrix macromolecules. J Biol Chem. 1997;272:2446–2451.[PubMed][Google Scholar]
  • 45. Holmbeck K, Bianco P, Chrysovergis K, Yamada S, Birkedal-Hansen HMT1-MMP-dependent, apoptotic remodeling of unmineralized cartilage: a critical process in skeletal growth. J Cell Biol. 2003;163:661–671.[Google Scholar]
  • 46. Oblander SA, et al Distinctive functions of membrane type 1 matrix-metalloprotease (MT1-MMP or MMP-14) in lung and submandibular gland development are independent of its role in pro-MMP-2 activation. Dev Biol. 2005;277:255–269.[PubMed][Google Scholar]
  • 47. Martignetti JA, et al Mutation of the matrix metalloproteinase 2 gene (MMP2) causes a multicentric osteolysis and arthritis syndrome. Nature Genet. 2001;28:261–265.[PubMed][Google Scholar]
  • 48. Kennedy AM, et al MMP13 mutation causes spondyloepimetaphyseal dysplasia, Missouri type 115, 2832–2842 (SEMDMO) . J Clin Invest. 2005[Google Scholar]
  • 49. Kim JW, et al MMP-20 mutation in autosomal recessive pigmented hypomaturation amelogenesis imperfecta. J Med Genet. 2005;42:271–275.[Google Scholar]
  • 50. Inoue K, et al A crucial role for matrix metalloproteinase 2 in osteocytic canalicular formation and bone metabolism. J Biol Chem. 2006;281:33814–33824.[PubMed][Google Scholar]
  • 51. Strongin AY, et al. Mechanism of cell surface activation of 72-kDa type IV collagenase. Isolation of the activated form of the membrane metalloprotease. J Biol Chem. 1995;270:5331–5338.[PubMed]
  • 52. Sato H, et al A matrix metalloproteinase expressed on the surface of invasive tumor cells. Nature. 1994;370:61–65. Discovery of the first transmembrane MMP, MMP14 (MT1-MMP). This discovery changed the concept of pericellular proteolysis. [[PubMed][Google Scholar]
  • 53. Sternlicht MD, Kouros-Mehr H, Lu P, Werb ZHormonal and local control of mammary branching morphogenesis. Differentiation. 2006;74:365–381.[Google Scholar]
  • 54. Wiseman BS, et al Site-specific inductive and inhibitory activities of MMP-2 and MMP-3 orchestrate mammary gland branching morphogenesis. J Cell Biol. 2003;162:1123–1133.[Google Scholar]
  • 55. Kato T, et al Diminished corneal angiogenesis in gelatinase A-deficient mice. FEBS Lett. 2001;508:187–190.[PubMed][Google Scholar]
  • 56. Lambert V, et al MMP-2 and MMP-9 synergize in promoting choroidal neovascularization. FASEB J. 2003;17:2290–2292.[PubMed][Google Scholar]
  • 57. Chun TH, et al MT1-MMP-dependent neovessel formation within the confines of the three-dimensional extracellular matrix. J Cell Biol. 2004;167:757–767.[Google Scholar]
  • 58. Filippov S, et al MT1-matrix metalloproteinase directs arterial wall invasion and neointima formation by vascular smooth muscle cells. J Exp Med. 2005;202:663–671.[Google Scholar]
  • 59. Chantrain CF, et al Stromal matrix metalloproteinase-9 regulates the vascular architecture in neuroblastoma by promoting pericyte recruitment. Cancer Res. 2004;64:1675–1686.[PubMed][Google Scholar]
  • 60. Lehti K, et al An MT1-MMP–PDGF receptor-β axis regulates mural cell investment of the microvasculature. Genes Dev. 2005;19:979–991.[Google Scholar]
  • 61. Park JE, Keller GA, Ferrara NThe vascular endothelial growth factor (VEGF) isoforms: differential deposition into the subepithelial extracellular matrix and bioactivity of extracellular matrix-bound VEGF. Mol Biol Cell. 1993;4:1317–1326.[Google Scholar]
  • 62. Bergers G, Hanahan D, Coussens LMAngiogenesis and apoptosis are cellular parameters of neoplastic progression in transgenic mouse models of tumorigenesis. Int J Dev Biol. 1998;42:995–1002. Discovery that MMP-regulated bioavailability of VEGF regulated the angiogenic switch early in tumour progression. [[PubMed][Google Scholar]
  • 63. Bergers G, et al Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nature Cell Biol. 2000;2:737–744.[Google Scholar]
  • 64. Lee S, Jilani SM, Nikolova GV, Carpizo D, Iruela-Arispe MLProcessing of VEGF-A by matrix metalloproteinases regulates bioavailability and vascular patterning in tumors. J Cell Biol. 2005;169:681–691.[Google Scholar]
  • 65. Hasebe T, Hartman R, Fu L, Amano T, Shi YBEvidence for a cooperative role of gelatinase A and membrane type-1 matrix metalloproteinase during Xenopus laevis development. Mech Dev. 2007;124:11–22.[Google Scholar]
  • 66. Harrison M, et al Matrix metalloproteinase genes in Xenopus development. Dev Dyn. 2004;231:214–220.[PubMed][Google Scholar]
  • 67. Leontovich AA, Zhang J, Shimokawa K, Nagase H, Sarras MP., Jr A novel hydra matrix metalloproteinase (HMMP) functions in extracellular matrix degradation, morphogenesis and the maintenance of differentiated cells in the foot process. Development. 2000;127:907–920.[PubMed]
  • 68. Yoong S, et al Characterization of the zebrafish matrix metalloproteinase 9 gene and its developmental expression pattern. Gene Expr Patterns. 2007;7:39–46.[PubMed][Google Scholar]
  • 69. Bai S, et al Matrix metalloproteinase expression and function during fin regeneration in zebrafish: analysis of MT1-MMP, MMP2 and TIMP2. Matrix Biol. 2005;24:247–260.[PubMed][Google Scholar]
  • 70. Zhang J, Bai S, Zhang X, Nagase H, Sarras MP., Jr The expression of novel membrane-type matrix metalloproteinase isoforms is required for normal development of zebrafish embryos. Matrix Biol. 2003;22:279–293.[PubMed]
  • 71. Sherwood DR, Butler JA, Kramer JM, Sternberg PWFOS-1 promotes basement-membrane removal during anchor-cell invasion in C. elegans. Cell. 2005;121:951–962.[PubMed][Google Scholar]
  • 72. Wada K, et al Cloning of three Caenorhabditis elegans genes potentially encoding novel matrix metalloproteinases. Gene. 1998;211:57–62.[PubMed][Google Scholar]
  • 73. Llano E, et al Structural and enzymatic characterization of Drosophila Dm2-MMP, a membrane-bound matrix metalloproteinase with tissue-specific expression. J Biol Chem. 2002;277:23321–23329.[PubMed][Google Scholar]
  • 74. Llano E, Pendas AM, Aza-Blanc P, Kornberg TB, Lopez-Otin CDm1-MMP, a matrix metalloproteinase from Drosophila with a potential role in extracellular matrix remodeling during neural development. J Biol Chem. 2000;275:35978–35985.[PubMed][Google Scholar]
  • 75. Page-McCaw A, Serano J, Sante JM, Rubin GMDrosophila matrix metalloproteinases are required for tissue remodeling, but not embryonic development. Dev Cell. 2003;4:95–106. A clear demonstration of the important role of MMPs in tissue remodelling. [[PubMed][Google Scholar]
  • 76. Wei S, Xie Z, Filenova E, Brew K. Drosophila TIMP is a potent inhibitor of MMPs and TACE: similarities in structure and function to TIMP-3. Biochemistry. 2003;42:12200–12207.[PubMed]
  • 77. Beitel GJ, Krasnow MAGenetic control of epithelial tube size in the Drosophila tracheal system. Development. 2000;127:3271–3282.[PubMed][Google Scholar]
  • 78. Zhang S, et al An MMP liberates the Ninjurin A ectodomain to signal a loss of cell adhesion. Genes Dev. 2006;20:1899–1910. Demonstration that MMP cleavage regulates adhesion and signalling. [Google Scholar]
  • 79. Uhlirova M, Bohmann DJNK- and Fos-regulated MMP1 expression cooperates with Ras to induce invasive tumors in Drosophila. EMBO J. 2006;25:5294–5304. Following loss of MMPs, mutant tissue overproliferates, resists apoptosis, leaves its site of origin and invades other organs, ultimately causing lethality. [Google Scholar]
  • 80. Beaucher M, Herspberger E, Page-McCaw A, Shearn AMetastatic ability of Drosophila tumors depends on MMP activity. Dev Biol. 2006 Dec 5; doi: 10.1016/j.ydbio.2006.12.001.] [[PubMed][Google Scholar]
  • 81. Parks WC, Wilson CL, Lopez-Boado YSMatrix metalloproteinases as modulators of inflammation and innate immunity. Nature Rev Immunol. 2004;4:617–629.[PubMed][Google Scholar]
  • 82. Lopez-Boado YS, et al Bacterial exposure induces and activates matrilysin in mucosal epithelial cells. J Cell Biol. 2000;148:1305–1315.[Google Scholar]
  • 83. Wilson CL, et al Regulation of intestinal-defensin activation by the metalloproteinase matrilysin in innate host defense. Science. 1999;286:113–117.[PubMed][Google Scholar]
  • 84. McGuire JK, Li Q, Parks WCMatrilysin (matrix metalloproteinase-7) mediates E-cadherin ectodomain shedding in injured lung epithelium. Am J Pathol. 2003;162:1831–1843.[Google Scholar]
  • 85. Dunsmore SE, et al Matrilysin expression and function in airway epithelium. J Clin Invest. 1998;102:1321–1331.[Google Scholar]
  • 86. Bullard KM, et al Impaired wound contraction in stromelysin-1-deficient mice. Ann Surg. 1999;230:260–265.[Google Scholar]
  • 87. Haas TL, Madri JAExtracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends Cardiovasc Med. 1999;9:70–77.[PubMed][Google Scholar]
  • 88. Haro H, et al Matrix metalloproteinase-3-dependent generation of a macrophage chemoattractant in a model of herniated disc resorption. J Clin Invest. 2000;105:133–141.[Google Scholar]
  • 89. Wang M, et al Matrix metalloproteinase deficiencies affect contact hypersensitivity: stromelysin-1 deficiency prevents the response and gelatinase B deficiency prolongs the response. Proc Natl Acad Sci USA. 1999;96:6885–6889.[Google Scholar]
  • 90. Zheng T, et al Inducible targeting of IL-13 to the adult lung causes matrix metalloproteinase- and cathepsin-dependent emphysema. J Clin Invest. 2000;106:1081–1093.[Google Scholar]
  • 91. Kumagai K, et al Inhibition of matrix metalloproteinases prevents allergen-induced airway inflammation in a murine model of asthma. J Immunol. 1999;162:4212–4219.[PubMed][Google Scholar]
  • 92. Overall CM, McQuibban GA, Clark-Lewis IDiscovery of chemokine substrates for matrix metalloproteinases by exosite scanning: a new tool for degradomics. Biol Chem. 2002;383:1059–1066.[PubMed][Google Scholar]
  • 93. Van den Steen PE, Proost P, Wuyts A, Van Damme J, Opdenakker GNeutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4, and GRO-α and leaves RANTES and MCP-2 intact. Blood. 2000;96:2673–2681.[PubMed][Google Scholar]
  • 94. D’Haese A, et al In vivo neutrophil recruitment by granulocyte chemotactic protein-2 is assisted by gelatinase B/MMP-9 in the mouse. J Interferon Cytokine Res. 2000;20:667–674.[PubMed][Google Scholar]
  • 95. Corry DB, et al Decreased allergic lung inflammatory cell egression and increased susceptibility to asphyxiation in MMP2-deficiency. Nature Immunol. 2002;3:347–353.[Google Scholar]
  • 96. Corry DB, et al Overlapping and independent contributions of MMP2 and MMP9 to lung allergic inflammatory cell egression through decreased CC chemokines. FASEB J. 2004;18:995–997.[Google Scholar]
  • 97. Greenlee KJ, et al Proteomic identification of in vivo substrates for matrix metalloproteinases 2 and 9 reveals a mechanism for resolution of inflammation. J Immunol. 2006;177:7312–7321.[Google Scholar]
  • 98. Liu Z, et al The serpin α1-proteinase inhibitor is a critical substrate for gelatinase B/MMP-9 in vivo. Cell. 2000;102:647–655.[PubMed][Google Scholar]
  • 99. McQuibban GA, et al Inflammation dampened by gelatinase A cleavage of monocyte chemoattractant protein-3. Science. 2000;289:1202–1206. First demonstration that a main role of MMPs is to regulate chemokine activity and therefore the chemoattraction of immune cells. [[PubMed][Google Scholar]
  • 100. McQuibban GA, et al Matrix metalloproteinase activity inactivates the CXC chemokine stromal cell-derived factor-1. J Biol Chem. 2001;276:43503–43508.[PubMed][Google Scholar]
  • 101. McQuibban GA, et al Matrix metalloproteinase processing of monocyte chemoattractant proteins generates CC chemokine receptor antagonists with anti-inflammatory properties in vivo. Blood. 2002;100:1160–1167.[PubMed][Google Scholar]
  • 102. Van Den Steen PE, et al Gelatinase B/MMP-9 and neutrophil collagenase/MMP-8 process the chemokines human GCP-2/CXCL6, ENA-78/CXCL5 and mouse GCP-2/LIX and modulate their physiological activities. Eur J Biochem. 2003;270:3739–3749.[PubMed][Google Scholar]
  • 103. Van Lint P, et al Resistance of collagenase-2 (matrix metalloproteinase-8)-deficient mice to TNF-induced lethal hepatitis. J Immunol. 2005;175:7642–7649.[PubMed][Google Scholar]
  • 104. Balbin M, et al Loss of collagenase-2 confers increased skin tumor susceptibility to male mice. Nature Genet. 2003;35:252–257.[PubMed][Google Scholar]
  • 105. Weathington NM, et al A novel peptide CXCR ligand derived from extracellular matrix degradation during airway inflammation. Nature Med. 2006;12:317–323.[PubMed][Google Scholar]
  • 106. Asahi M, et al Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood-brain barrier and white matter components after cerebral ischemia. J Neurosci. 2001;21:7724–7732.[Google Scholar]
  • 107. Lee MM, et al Tissue inhibitor of metalloproteinase 1 regulates resistance to infection. Infect Immun. 2005;73:661–665.[Google Scholar]
  • 108. Vermaelen KY, et al Matrix metalloproteinase-9-mediated dendritic cell recruitment into the airways is a critical step in a mouse model of asthma. J Immunol. 2003;171:1016–1022.[PubMed][Google Scholar]
  • 109. Lanone S, et al Overlapping and enzyme-specific contributions of matrix metalloproteinases-9 and-12 in IL-13-induced inflammation and remodeling. J Clin Invest. 2002;110:463–474.[Google Scholar]
  • 110. Pyo R, et al Targeted gene disruption of matrix metalloproteinase-9 (gelatinase B) suppresses development of experimental abdominal aortic aneurysms. J Clin Invest. 2000;105:1641–1649.[Google Scholar]
  • 111. Lelongt B, et al Matrix metalloproteinase 9 protects mice from anti-glomerular basement membrane nephritis through its fibrinolytic activity. J Exp Med. 2001;193:793–802.[Google Scholar]
  • 112. McMillan SJ, et al Matrix metalloproteinase-9 deficiency results in enhanced allergen-induced airway inflammation. J Immunol. 2004;172:2586–2594.[PubMed][Google Scholar]
  • 113. Hautamaki RD, Kobayashi DK, Senior RM, Shapiro SDRequirement for macrophage elastase for cigarette smoke-induced emphysema in mice. Science. 1997;277:2002–2004.[PubMed][Google Scholar]
  • 114. Morris DG, et al Loss of integrin α(v)β6-mediated TGF-β activation causes Mmp12-dependent emphysema. Nature. 2003;422:169–173.[PubMed][Google Scholar]
  • 115. Liu Z, et al Synergy between a plasminogen cascade and MMP-9 in autoimmune disease. J Clin Invest. 2005;115:879–887.[Google Scholar]
  • 116. Esparza J, Kruse M, Lee J, Michaud M, Madri JAMMP-2 null mice exhibit an early onset and severe experimental autoimmune encephalomyelitis due to an increase in MMP-9 expression and activity. FASEB J. 2004;18:1682–1691.[PubMed][Google Scholar]
  • 117. Lopez-Otin C, Overall CMProtease degradomics: a new challenge for proteomics. Nature Rev Mol Cell Biol. 2002;3:509–519.[PubMed][Google Scholar]
  • 118. Sottrup-Jensen L, Birkedal-Hansen H. Human fibroblast collagenase-α-macroglobulin interactions. Localization of cleavage sites in the bait regions of five mammalian α-macroglobulins. J Biol Chem. 1989;264:393–401.[PubMed]
  • 119. Chase AJ, Newby ACRegulation of matrix metalloproteinase (matrixin) genes in blood vessels: a multi-step recruitment model for pathological remodelling. J Vasc Res. 2003;40:329–343.[PubMed][Google Scholar]
  • 120. Leeman MF, Curran S, Murray GIThe structure, regulation, and function of human matrix metalloproteinase-13. Crit Rev Biochem Mol Biol. 2002;37:149–166.[PubMed][Google Scholar]
  • 121. Ortega N, Werb ZNew functional roles for non-collagenous domains of basement membrane collagens. J Cell Sci. 2002;115:4201–4214.[Google Scholar]
  • 122. Nyberg P, Xie L, Kalluri REndogenous inhibitors of angiogenesis. Cancer Res. 2005;65:3967–3979.[PubMed][Google Scholar]
  • 123. Kalluri RBasement membranes: structure, assembly and role in tumour angiogenesis. Nature Rev Cancer. 2003;3:422–433.[PubMed][Google Scholar]
  • 124. Sund M, et al Function of endogenous inhibitors of angiogenesis as endothelium-specific tumor suppressors. Proc Natl Acad Sci USA. 2005;102:2934–2939.[Google Scholar]
  • 125. Larrain J, et al BMP-binding modules in chordin: a model for signalling regulation in the extracellular space. Development. 2000;127:821–830.[Google Scholar]
  • 126. De Robertis EMSpemann’s organizer and self-regulation in amphibian embryos. Nature Rev Mol Cell Biol. 2006;7:296–302.[Google Scholar]
  • 127. Hamano Y, et al Physiological levels of tumstatin, a fragment of collagen IV α3 chain, are generated by MMP-9 proteolysis and suppress angiogenesis via αV β3 integrin. Cancer Cell. 2003;3:589–601. Shows the molecular mechanisms that underlie the function of new bioactive molecules generated from extracellular matrix by MMPs. [Google Scholar]
  • 128. Houghton AM, et al Macrophage elastase (matrix metalloproteinase-12) suppresses growth of lung metastases. Cancer Res. 2006;66:6149–6155.[PubMed][Google Scholar]
  • 129. Fjeldstad K, Kolset SODecreasing the metastatic potential in cancers--targeting the heparan sulfate proteoglycans. Curr Drug Targets. 2005;6:665–682.[PubMed][Google Scholar]
  • 130. Gu Z, et al A highly specific inhibitor of matrix metalloproteinase-9 rescues laminin from proteolysis and neurons from apoptosis in transient focal cerebral ischemia. J Neurosci. 2005;25:6401–6408.[Google Scholar]
  • 131. Trackman PCDiverse biological functions of extracellular collagen processing enzymes. J Cell Biochem. 2005;96:927–937.[Google Scholar]
  • 132. Fukui N, et al Processing of type II procollagen amino propeptide by matrix metalloproteinases. J Biol Chem. 2002;277:2193–2201.[PubMed][Google Scholar]
  • 133. Dusek RL, et al The differentiation-dependent desmosomal cadherin desmoglein 1 is a novel caspase-3 target that regulates apoptosis in keratinocytes. J Biol Chem. 2006;281:3614–3624.[PubMed][Google Scholar]
  • 134. Illman SA, Lehti K, Keski-Oja J, Lohi JEpilysin (MMP-28) induces TGF-β mediated epithelial to mesenchymal transition in lung carcinoma cells. J Cell Sci. 2006;119:3856–3865.[PubMed][Google Scholar]
  • 135. Radisky DC, et al Rac1b and reactive oxygen species mediate MMP-3-induced EMT and genomic instability. Nature. 2005;436:123–127. Works out the molecular mechanisms downstream of MMP cleavage that lead to tumour development. [Google Scholar]
  • 136. Duong TD, Erickson CAMMP-2 plays an essential role in producing epithelial-mesenchymal transformations in the avian embryo. Dev Dyn. 2004;229:42–53.[PubMed][Google Scholar]
  • 137. Song W, Jackson K, McGuire PGDegradation of type IV collagen by matrix metalloproteinases is an important step in the epithelial-mesenchymal transformation of the endocardial cushions. Dev Biol. 2000;227:606–617.[PubMed][Google Scholar]
  • 138. Sternlicht MD, et al The stromal proteinase MMP3/stromelysin-1 promotes mammary carcinogenesis. Cell. 1999;98:137–146. Demonstrates that MMPs not only facilitate cell invasion, but can also initiate tumour progression directly. [Google Scholar]
  • 139. Takahashi C, et al Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc Natl Acad Sci USA. 1998;95:13221–13226.[Google Scholar]
  • 140. Fernandez-Patron C, Radomski MW, Davidge STVascular matrix metalloproteinase-2 cleaves big endothelin-1 yielding a novel vasoconstrictor. Circ Res. 1999;85:906–911.[PubMed][Google Scholar]
  • 141. Xu J, Park PW, Kheradmand F, Corry DBEndogenous attenuation of allergic lung inflammation by syndecan-1. J Immunol. 2005;174:5758–5765.[PubMed][Google Scholar]
  • 142. Hinkle CL, et al Multiple metalloproteinases process protransforming growth factor-α (proTGF-α) Biochemistry. 2003;42:2127–2136.[PubMed][Google Scholar]
  • 143. Sahin U, et al Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J Cell Biol. 2004;164:769–779.[Google Scholar]
  • 144. Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura YRole of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med. 2006;231:20–27.[PubMed][Google Scholar]
  • 145. Zhang K, et al HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-1 causes neurodegeneration. Nature Neurosci. 2003;6:1064–1071. Shows that MMPs regulate survival factors and excess activity can lead to cell death. [[PubMed][Google Scholar]
  • 146. Mizgerd JP, Spieker MR, Doerschuk CMEarly response cytokines and innate immunity: essential roles for TNF receptor 1 and type I IL-1 receptor during Escherichia coli pneumonia in mice. J Immunol. 2001;166:4042–4048.[PubMed][Google Scholar]
  • 147. Xu H, Uysal KT, Becherer JD, Arner P, Hotamisligil GSAltered tumor necrosis factor-α (TNF-α) processing in adipocytes and increased expression of transmembrane TNF-α in obesity. Diabetes. 2002;51:1876–1883.[PubMed][Google Scholar]
  • 148. Chun TH, et al A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell. 2006;125:577–591. This study shows that MMPs contribute to the architectural context of cells and argues that this might be necessary for the conversion of pre-adipocytes to adipocytes. [[PubMed][Google Scholar]
  • 149. Alexander CM, Selvarajan S, Mudgett J, Werb ZStromelysin-1 regulates adipogenesis during mammary gland involution. J Cell Biol. 2001;152:693–703.[Google Scholar]
  • 150. Gerber HP, Ferrara NAngiogenesis and bone growth. Trends Cardiovasc Med. 2000;10:223–228.[PubMed][Google Scholar]
  • 151. Harper J, Klagsbrun MCartilage to bone — angiogenesis leads the way. Nature Med. 1999;5:617–618.[PubMed][Google Scholar]
  • 152. Itoh T, et al Unaltered secretion of β-amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J Biol Chem. 1997;272:22389–22392.[PubMed][Google Scholar]
  • 153. Kheradmand F, Rishi K, Werb ZSignaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci. 2002;115:839–848.[Google Scholar]
  • 154. VanSaun M, Herrera AA, Werle MJStructural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice. J Neurocytol. 2003;32:1129–1142.[PubMed][Google Scholar]
  • 155. Larsen PH, Wells JE, Stallcup WB, Opdenakker G, Yong VWMatrix metalloproteinase-9 facilitates remyelination in part by processing the inhibitory NG2 proteoglycan. J Neurosci. 2003;23:11127–11135.[Google Scholar]
  • 156. Galis ZS, et al Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res. 2002;91:852–859.[PubMed][Google Scholar]
  • 157. Masson R, et al In vivo evidence that the stromelysin-3 metalloproteinase contributes in a paracrine manner to epithelial cell malignancy. J Cell Biol. 1998;140:1535–1541.[Google Scholar]
  • 158. Wells JE, et al An adverse role for matrix metalloproteinase 12 after spinal cord injury in mice. J Neurosci. 2003;23:10107–10115.[Google Scholar]
  • 159. Uchinami H, Seki E, Brenner DA, D’Armiento JLoss of MMP 13 attenuates murine hepatic injury and fibrosis during cholestasis. Hepatology. 2006;44:420–429.[PubMed][Google Scholar]
  • 160. Deguchi JO, et al Matrix metalloproteinase-13/collagenase-3 deletion promotes collagen accumulation and organization in mouse atherosclerotic plaques. Circulation. 2005;112:2708–2715.[PubMed][Google Scholar]
  • 161. Holmbeck K, et al The metalloproteinase MT1-MMP is required for normal development and maintenance of osteocyte processes in bone. J Cell Sci. 2005;118:147–156.[PubMed][Google Scholar]
  • 162. Beertsen W, et al On the role of MT1-MMP, a matrix metalloproteinase essential to collagen remodeling, in murine molar eruption and root growth. Eur J Oral Sci. 2002;110:445–451.[PubMed][Google Scholar]
  • 163. Atkinson JJ, et al Membrane-type 1 matrix metalloproteinase is required for normal alveolar development. Dev Dyn. 2005;232:1079–1090.[PubMed][Google Scholar]
  • 164. Pendas AM, et al Diet-induced obesity and reduced skin cancer susceptibility in matrix metalloproteinase 19-deficient mice. Mol Cell Biol. 2004;24:5304–5313.[Google Scholar]
  • 165. Caterina JJ, et al Enamelysin (matrix metalloproteinase 20)-deficient mice display an amelogenesis imperfecta phenotype. J Biol Chem. 2002;277:49598–49604.[PubMed][Google Scholar]
  • 166. Komori K, et al Absence of mechanical allodynia and Aβ-fiber sprouting after sciatic nerve injury in mice lacking membrane-type 5 matrix metalloproteinase. FEBS Lett. 2004;557:125–128.[PubMed][Google Scholar]
  • 167. Zhou HE, Zhang X, Nothnick WBDisruption of the TIMP-1 gene product is associated with accelerated endometrial gland formation during early postnatal uterine development. Biol Reprod. 2004;71:534–539.[PubMed][Google Scholar]
  • 168. Chaillan FA, et al Involvement of tissue inhibition of metalloproteinases-1 in learning and memory in mice. Behav Brain Res. 2006;173:191–198.[Google Scholar]
  • 169. Mohammed FF, et al Metalloproteinase inhibitor TIMP-1 affects hepatocyte cell cycle via HGF activation in murine liver regeneration. Hepatology. 2005;41:857–867.[PubMed][Google Scholar]
  • 170. Jaworski DM, Soloway P, Caterina J, Falls WATissue inhibitor of metalloproteinase-2 (TIMP-2)-deficient mice display motor deficits. J Neurobiol. 2006;66:82–94.[Google Scholar]
  • 171. Fata JE, et al Accelerated apoptosis in the TIMP-3-deficient mammary gland. J Clin Invest. 2001;108:831–841.[Google Scholar]
  • 172. Gill SE, Pape MC, Khokha R, Watson AJ, Leco KJA null mutation for tissue inhibitor of metalloproteinases-3 (TIMP-3) impairs murine bronchiole branching morphogenesis. Dev Biol. 2003;261:313–323.[PubMed][Google Scholar]
  • 173. Cruz-Munoz W, et al Enhanced metastatic dissemination to multiple organs by melanoma and lymphoma cells in Timp-3 mice. Oncogene. 2006;25:6489–6496.[PubMed][Google Scholar]
  • 174. English JL, et al Individual Timp deficiencies differentially impact pro-MMP-2 activation. J Biol Chem. 2006;281:10337–10346.[PubMed][Google Scholar]
  • 175. Godenschwege TA, Pohar N, Buchner S, Buchner EInflated wings, tissue autolysis and early death in tissue inhibitor of metalloproteinases mutants of Drosophila. Eur J Cell Biol. 2000;79:495–501.[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.