Lack of effect of dopaminergic denervation on caudate-putamen hyperthermia or hypothermia induced by drugs and mild stressors.
Journal: 2011/February - Pharmacology Biochemistry and Behavior
ISSN: 1873-5177
Abstract:
A number of drugs and psychological stressors induce brain hyperthermia and increase extracellular dopamine in the caudate-putamen. The present study tested whether caudate-putamen hyperthermia produced by such stimuli is dependent on dopaminergic transmission. Rats were infused with 6-hydroxydopamine unilaterally into the medial forebrain bundle, and after a two-week recovery period, removable thermocouples were used to monitor temperature in the depleted and intact caudate-putamen in freely-moving animals. The indirect dopamine agonist d-amphetamine (1 and 2mg/kg s.c.) increased caudate-putamen temperature, whereas a low dose of the direct agonist apomorphine (0.1mg/kg s.c.) reduced it. Gamma-butyrolactone, which strongly inhibits dopamine release at the dose administered (700mg/kg i.p.), initially reduced and then increased caudate-putamen temperature. Brief (5-10min) presentation of mild stressors, including tail pinch, produced a rapid and transient caudate-putamen hyperthermia. Quantitative (125)I-RTI-55 autoradiography in post-mortem tissue revealed a 97-100% loss of binding to dopamine transporters in the lesioned caudate-putamen. Despite this near-total dopamine denervation, neither basal caudate-putamen temperature, nor any of the observed temperature responses to drugs or mild stressors, was altered. We conclude that in the caudate-putamen, endogenous dopamine is unlikely to modulate temperature significantly at a local level.
Relations:
Citations
(2)
Conditions
(2)
Drugs
(2)
Chemicals
(2)
Organisms
(3)
Anatomy
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.