Inhibition kinetics of certain enzymes in the nervous tissue of vector snail Lymnaea acuminata by active molluscicidal components of Sapindus mukorossi and Terminalia chebula.
Journal: 2012/February - Chemosphere
ISSN: 1879-1298
Abstract:
Effect of active molluscicidal components of Sapindus mukorossi and Terminalia chebula on the acetylcholinesterase (AChE), acid and alkaline phosphatase (ACP/ALP) activity in the nervous tissue of freshwater snail Lymnaea acuminata were studied. In vivo and in vitro exposure of saponin (active component of S. mukorossi pericarp) and tannic acid (active component of T. chebula) significantly inhibited the AChE, ACP and ALP activity in the nervous tissue of L. acuminata. The inhibition kinetics of these enzymes indicate that saponin and tannic acid caused competitive and competitive-non-competitive inhibition of AChE, respectively. Saponin also caused competitive and competitive-non-competitive inhibition of ACP and ALP, respectively, whereas tannic acid caused competitive-non-competitive inhibition of ACP and ALP. Thus the inhibition of AChE, ACP and ALP by saponin and tannic acid in the nervous tissue of L. acuminata may be the cause of molluscicidal activity of S. mukorossi and T. chebula.
Relations:
Citations
(4)
Drugs
(1)
Chemicals
(2)
Organisms
(4)
Processes
(1)
Anatomy
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.