Identification of an endogenous inhibitor of the cardiac Na+/Ca2+ exchanger, phospholemman.
Journal: 2005/July - Journal of Biological Chemistry
ISSN: 0021-9258
Abstract:
Rapid and precise control of Na(+)/Ca(2+) exchanger (NCX1) activity is essential in the maintenance of beat-to-beat Ca(2+) homeostasis in cardiac myocytes. Here, we show that phospholemman (PLM), a 15-kDa integral sarcolemmal phosphoprotein, is a novel endogenous protein inhibitor of cardiac NCX1. Using a heterologous expression system that is devoid of both endogenous PLM and NCX1, we first demonstrated by confocal immunofluorescence studies that both exogenous PLM and NCX1 co-localized at the plasma membrane. Reciprocal co-immunoprecipitation studies revealed specific protein-protein interaction between PLM and NCX1. The functional consequences of direct association of PLM with NCX1 was the inhibition of NCX1 activity, as demonstrated by whole-cell patch clamp studies to measure NCX1 current density and radiotracer flux assays to assess Na(+)-dependent (45)Ca(2+) uptake. Inhibition of NCX1 by PLM was specific, because a single mutation of serine 68 to alanine in PLM resulted in a complete loss of inhibition of NCX1 current, although association of the PLM mutant with NCX1 was unaltered. In native adult cardiac myocytes, PLM co-immunoprecipitated with NCX1. We conclude that PLM, a member of the FXYD family of small ion transport regulators known to modulate Na(+)-K(+)-ATPase, also regulates Na(+)/Ca(2+) exchange in the heart.
Relations:
Citations
(29)
Drugs
(1)
Chemicals
(4)
Genes
(2)
Organisms
(4)
Processes
(2)
Anatomy
(3)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.