Identification and characterization of the water gap in physically dormant seeds of Geraniaceae, with special reference to Geranium carolinianum.
Journal: 2010/September - Annals of Botany
ISSN: 1095-8290
Abstract:
OBJECTIVE
Physical dormancy in seeds of species of Geraniaceae is caused by a water-impermeable palisade layer in the outer integument of the seed coat and a closed chalaza. The chalazal cleft has been reported to be the water gap (i.e. location of initial water entry) in innately permeable seeds of Geraniaceae. The primary aim of this study was to re-evaluate the location of the water gap and to characterize its morphology and anatomy in physically dormant seeds of Geraniaceae, with particular reference to G. carolinianum.
METHODS
Length, width, mass, anatomy and germination of two seed types (light brown and dark brown) of G. carolinianum were compared. Location, anatomy and morphology of the water gap were characterized using free-hand and microtome tissue sectioning, light microscopy, scanning electron microscopy, dye tracking, blocking and seed-burial experiments.
RESULTS
Treatment with dry heat caused a colour change in the palisade cells adjacent to the micropyle. When placed in water, the 'hinged valve' (blister) erupted at the site of the colour change, exposing the water gap. The morphology and anatomy in the water-gap region differs from those of the rest of the seed coat. the morphology of the seed coat of the water-gap region is similar in G. carolinianum, G. columbinum, G. molle and G. pusillum and differs from that of the closely related species Erodium cicutarium.
CONCLUSIONS
Dislodgment of swollen 'hinged valve' palisade cells adjacent to the micropyle caused the water gap to open in physically dormant seeds of G. carolinianum, and it was clear that initial water uptake takes place through this gap and not via the chalazal opening as previously reported. This water gap ('hinged valve gap') differs from water gaps previously described for other families in morphology, anatomy and location in the seed coat.
Relations:
Content
Citations
(5)
References
(7)
Chemicals
(2)
Organisms
(2)
Processes
(9)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Ann Bot 105(6): 977-990

Identification and characterization of the water gap in physically dormant seeds of Geraniaceae, with special reference to <em>Geranium carolinianum</em>

Background and Aims

Physical dormancy in seeds of species of Geraniaceae is caused by a water-impermeable palisade layer in the outer integument of the seed coat and a closed chalaza. The chalazal cleft has been reported to be the water gap (i.e. location of initial water entry) in innately permeable seeds of Geraniaceae. The primary aim of this study was to re-evaluate the location of the water gap and to characterize its morphology and anatomy in physically dormant seeds of Geraniaceae, with particular reference to G. carolinianum.

Methods

Length, width, mass, anatomy and germination of two seed types (light brown and dark brown) of G. carolinianum were compared. Location, anatomy and morphology of the water gap were characterized using free-hand and microtome tissue sectioning, light microscopy, scanning electron microscopy, dye tracking, blocking and seed-burial experiments.

Key Results

Treatment with dry heat caused a colour change in the palisade cells adjacent to the micropyle. When placed in water, the ‘hinged valve’ (blister) erupted at the site of the colour change, exposing the water gap. The morphology and anatomy in the water-gap region differs from those of the rest of the seed coat. The morphology of the seed coat of the water-gap region is similar in G. carolinianum, G. columbinum, G. molle and G. pusillum and differs from that of the closely related species Erodium cicutarium.

Conclusions

Dislodgment of swollen ‘hinged valve’ palisade cells adjacent to the micropyle caused the water gap to open in physically dormant seeds of G. carolinianum, and it was clear that initial water uptake takes place through this gap and not via the chalazal opening as previously reported. This water gap (‘hinged valve gap’) differs from water gaps previously described for other families in morphology, anatomy and location in the seed coat.

Department of Biology
Department of Horticulture
Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA
For correspondence. E-mail ude.yku@htijnarusnilan
Received 2010 Jan 11; Revised 2010 Mar 2; Accepted 2010 Mar 17.

Abstract

Background and Aims

Physical dormancy in seeds of species of Geraniaceae is caused by a water-impermeable palisade layer in the outer integument of the seed coat and a closed chalaza. The chalazal cleft has been reported to be the water gap (i.e. location of initial water entry) in innately permeable seeds of Geraniaceae. The primary aim of this study was to re-evaluate the location of the water gap and to characterize its morphology and anatomy in physically dormant seeds of Geraniaceae, with particular reference to G. carolinianum.

Methods

Length, width, mass, anatomy and germination of two seed types (light brown and dark brown) of G. carolinianum were compared. Location, anatomy and morphology of the water gap were characterized using free-hand and microtome tissue sectioning, light microscopy, scanning electron microscopy, dye tracking, blocking and seed-burial experiments.

Key Results

Treatment with dry heat caused a colour change in the palisade cells adjacent to the micropyle. When placed in water, the ‘hinged valve’ (blister) erupted at the site of the colour change, exposing the water gap. The morphology and anatomy in the water-gap region differs from those of the rest of the seed coat. The morphology of the seed coat of the water-gap region is similar in G. carolinianum, G. columbinum, G. molle and G. pusillum and differs from that of the closely related species Erodium cicutarium.

Conclusions

Dislodgment of swollen ‘hinged valve’ palisade cells adjacent to the micropyle caused the water gap to open in physically dormant seeds of G. carolinianum, and it was clear that initial water uptake takes place through this gap and not via the chalazal opening as previously reported. This water gap (‘hinged valve gap’) differs from water gaps previously described for other families in morphology, anatomy and location in the seed coat.

Keywords: Erodium, Geraniaceae, Geranium, physical dormancy, seed-coat anatomy, seed burial, seed germination, water gap
Abstract

Values are means ± s.e.

* Indicates significant difference at P < 0·05, with an independent two-sample t-test.

ACKNOWLEDGEMENTS

We would like to express our sincere gratitude to Dr Sharyn E. Perry, Department of Plant and Soil Sciences, University of Kentucky, for allowing us to use the microtome and tissue-sectioning equipment; Ms Sharon T. Kester, Department of Horticulture, University of Kentucky, for helping with sectioning and staining of tissues; and Mr Larry Rice, Electron Microscopy Centre, University of Kentucky, for providing technical assistance with scanning electron microscopy imaging.

ACKNOWLEDGEMENTS

LITERATURE CITED

LITERATURE CITED
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.