Flavonoid components in Scutellaria baicalensis inhibit nicotine-induced proliferation, metastasis and lung cancer-associated inflammation in vitro.
Journal: 2014/November - International Journal of Oncology
ISSN: 1791-2423
Abstract:
The objective of the present study was to investigate the therapeutic efficacy of flavonoid components in Scutellaria baicalensis on proliferation, metastasis and lung cancer-associated inflammation during nicotine induction in the A549 and H1299 lung cancer cell lines. After experimental period, augmentation of proliferation was observed, accompanied by marked decrease in apoptotic cells in nicotine-induced lung cancer cells; additionally, nicotine-exposed cells exhibited increased invasive and migratory abilities based on invasion and wound-healing assay. Flavones in Scutellaria, baicalin, baicalein and wogonin significantly counteracted the above deleterious changes. Moreover, assessment of tumor apoptotic and metastatic factors on mRNA levels by quantitative PCR and protein levels by western blotting revealed that these phytochemical treatments effectively negated nicotine-induced upregulated expression of bcl-2, bcl-2/bax ratio, caspase-3, matrix metalloproteinase (MMP)-2 and MMP-9 as well as downregulated expression of bax. Further analysis of inflammatory markers such as tumor necrosis factor (TNF)-α and interleukin (IL)-6 in cell culture supernatant and mRNA and protein expression of nuclear transcription factor-kappaB (NF-κB) and I kappa B-alpha (IκB-α) was carried out to substantiate the anti-inflammatory effect of flavones in Scutellaria in nicotine-exposed lung cancer cells. The therapeutic effects observed in the present study are attributed to the potent potential against proliferation, metastasis and inflammatory microenvironment by flavonoid components in Scutellaria in nicotine-induced lung cancer cells.
Relations:
Citations
(15)
Diseases
(1)
Conditions
(2)
Drugs
(2)
Chemicals
(4)
Organisms
(2)
Processes
(3)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.