Fe deficiency induced changes in rice (Oryza sativa L.) thylakoids.
Journal: 2017/April - Environmental Science and Pollution Research
ISSN: 1614-7499
Abstract:
Iron deficiency is an important abiotic stress that limits productivity of crops all over the world. We selected a hybrid rice (Oryza sativa L.), LYPJ, which is super high-yield and widely cultured in China, to investigate changes in the components and structure of thylakoid membranes and photosynthetic performance in response to iron deficiency. Our results demonstrated that photosystem I (PSI) is the primary target for iron deficiency, while the changes in photosystem II (PSII) are important for rebuilding a balance in disrupted energy utilization and dissipation caused by differential degradation of photosynthetic components. The result of immunoblot analysis suggested that the core subunit PsaA declined drastically, while PsbA remained relatively stable. Furthermore, several organizational changes of the photosynthetic apparatus were found by BN-PAGE, including a marked decrease in the PSI core complexes, the Cytb 6 /f complex, and the trimeric form of the LHCII antenna, consistent with the observed unstacking grana. The fluorescence induction analysis indicated a descending PSII activity with energy dissipation enhanced markedly. In addition, we proposed that the crippled CO2 assimilation could be compensated by the enhanced of phosphoenolpyruvate carboxylase (PEPC), which is suggested by the decreased ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and photosynthetic efficiency.
Relations:
References
(27)
Chemicals
(1)
Organisms
(1)
Processes
(1)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.