Expression of Pokeweed Antiviral Protein in Transgenic Plants Induces Virus Resistance in Grafted Wild-Type Plants Independently of Salicylic Acid Accumulation and Pathogenesis-Related Protein Synthesis.
Journal: 2017/February - Plant Physiology
ISSN: 1532-2548
PUBMED: 12223762
Abstract:
Pokeweed antiviral protein (PAP), a 29-kD protein isolated from Phytolacca americana, inhibits translation by catalytically removing a specific adenine residue from the large rRNA of the 60S subunit of eukaryotic ribosomes. Transgenic tobacco (Nicotiana tabacum) plants expressing PAP or a variant (PAP-v) were shown to be resistant to a broad spectrum of plant viruses. Expression of PAP-v in transgenic plants induces synthesis of pathogenesis-related proteins and a very weak (<2-fold) increase in salicylic acid levels. Using reciprocal grafting experiments, we demonstrate here that transgenic tobacco rootstocks expressing PAP-v induce resistance to tobacco mosaic virus infection in both N. tabacum NN and nn scions. Increased resistance to potato virus X was also observed in N. tabacum nn scions grafted on transgenic rootstocks. PAP expression was not detected in the wild-type scions or rootstocks that showed virus resistance, nor was there any increase in salicylic acid levels or pathogenesis-related protein synthesis. Grafting experiments with transgenic plants expressing an inactive PAP mutant demonstrated that an intact active site of PAP is necessary for induction of virus resistance in wild-type scions. These results indicate that enzymatic activity of PAP is responsible for generating a signal that renders wild-type scions resistant to virus infection in the absence of increased salicylic acid levels and pathogenesis-related protein synthesis.
Relations:
Content
Citations
(8)
References
(21)
Drugs
(4)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Plant Physiol 114(3): 1113-1121

Expression of Pokeweed Antiviral Protein in Transgenic Plants Induces Virus Resistance in Grafted Wild-Type Plants Independently of Salicylic Acid Accumulation and Pathogenesis-Related Protein Synthesis.

Abstract

Pokeweed antiviral protein (PAP), a 29-kD protein isolated from Phytolacca americana, inhibits translation by catalytically removing a specific adenine residue from the large rRNA of the 60S subunit of eukaryotic ribosomes. Transgenic tobacco (Nicotiana tabacum) plants expressing PAP or a variant (PAP-v) were shown to be resistant to a broad spectrum of plant viruses. Expression of PAP-v in transgenic plants induces synthesis of pathogenesis-related proteins and a very weak (<2-fold) increase in salicylic acid levels. Using reciprocal grafting experiments, we demonstrate here that transgenic tobacco rootstocks expressing PAP-v induce resistance to tobacco mosaic virus infection in both N. tabacum NN and nn scions. Increased resistance to potato virus X was also observed in N. tabacum nn scions grafted on transgenic rootstocks. PAP expression was not detected in the wild-type scions or rootstocks that showed virus resistance, nor was there any increase in salicylic acid levels or pathogenesis-related protein synthesis. Grafting experiments with transgenic plants expressing an inactive PAP mutant demonstrated that an intact active site of PAP is necessary for induction of virus resistance in wild-type scions. These results indicate that enzymatic activity of PAP is responsible for generating a signal that renders wild-type scions resistant to virus infection in the absence of increased salicylic acid levels and pathogenesis-related protein synthesis.

Full Text

The Full Text of this article is available as a PDF (1.4M).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Barbieri L, Aron GM, Irvin JD, Stirpe F. Purification and partial characterization of another form of the antiviral protein from the seeds of Phytolacca americana L. (pokeweed). Biochem J. 1982 Apr 1;203(1):55–59.[PMC free article] [PubMed] [Google Scholar]
  • Beffa R, Szell M, Meuwly P, Pay A, Vögeli-Lange R, Métraux JP, Neuhaus G, Meins F, Jr, Nagy F. Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J. 1995 Dec 1;14(23):5753–5761.[PMC free article] [PubMed] [Google Scholar]
  • Bonness MS, Ready MP, Irvin JD, Mabry TJ. Pokeweed antiviral protein inactivates pokeweed ribosomes; implications for the antiviral mechanism. Plant J. 1994 Feb;5(2):173–183. [PubMed] [Google Scholar]
  • Herbers K, Meuwly P, Frommer WB, Metraux JP, Sonnewald U. Systemic Acquired Resistance Mediated by the Ectopic Expression of Invertase: Possible Hexose Sensing in the Secretory Pathway. Plant Cell. 1996 May;8(5):793–803.[PMC free article] [PubMed] [Google Scholar]
  • Hur Y, Hwang DJ, Zoubenko O, Coetzer C, Uckun FM, Tumer NE. Isolation and characterization of pokeweed antiviral protein mutations in Saccharomyces cerevisiae: identification of residues important for toxicity. Proc Natl Acad Sci U S A. 1995 Aug 29;92(18):8448–8452.[PMC free article] [PubMed] [Google Scholar]
  • Irvin JD, Kelly T, Robertus JD. Purification and properties of a second antiviral protein from Phytolacca americana which inactivates eukaryotic ribosomes. Arch Biochem Biophys. 1980 Apr 1;200(2):418–425. [PubMed] [Google Scholar]
  • Lodge JK, Kaniewski WK, Tumer NE. Broad-spectrum virus resistance in transgenic plants expressing pokeweed antiviral protein. Proc Natl Acad Sci U S A. 1993 Aug 1;90(15):7089–7093.[PMC free article] [PubMed] [Google Scholar]
  • Lord JM, Hartley MR, Roberts LM. Ribosome inactivating proteins of plants. Semin Cell Biol. 1991 Feb;2(1):15–22. [PubMed] [Google Scholar]
  • Malamy J, Carr JP, Klessig DF, Raskin I. Salicylic Acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science. 1990 Nov 16;250(4983):1002–1004. [PubMed] [Google Scholar]
  • Mittler R, Shulaev V, Lam E. Coordinated Activation of Programmed Cell Death and Defense Mechanisms in Transgenic Tobacco Plants Expressing a Bacterial Proton Pump. Plant Cell. 1995 Jan;7(1):29–42.[PMC free article] [PubMed] [Google Scholar]
  • Osborn RW, Hartley MR. Dual effects of the ricin A chain on protein synthesis in rabbit reticulocyte lysate. Inhibition of initiation and translocation. Eur J Biochem. 1990 Oct 24;193(2):401–407. [PubMed] [Google Scholar]
  • Pieterse CM, van Wees SC, Hoffland E, van Pelt JA, van Loon LC. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell. 1996 Aug;8(8):1225–1237.[PMC free article] [PubMed] [Google Scholar]
  • Stirpe F, Barbieri L, Battelli MG, Soria M, Lappi DA. Ribosome-inactivating proteins from plants: present status and future prospects. Biotechnology (N Y) 1992 Apr;10(4):405–412. [PubMed] [Google Scholar]
  • Stirpe F, Hughes RC. Specificity of ribosome-inactivating proteins with RNA N-glycosidase activity. Biochem J. 1989 Sep 15;262(3):1001–1002.[PMC free article] [PubMed] [Google Scholar]
  • Tumer NE, Hwang DJ, Bonness M. C-terminal deletion mutant of pokeweed antiviral protein inhibits viral infection but does not depurinate host ribosomes. Proc Natl Acad Sci U S A. 1997 Apr 15;94(8):3866–3871.[PMC free article] [PubMed] [Google Scholar]
  • Ussery MA, Irvin JD, Hardesty B. Inhibition of poliovirus replication by a plant antiviral peptide. Ann N Y Acad Sci. 1977 Mar 4;284:431–440. [PubMed] [Google Scholar]
  • Vernooij B, Friedrich L, Morse A, Reist R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H, Ryals J. Salicylic Acid Is Not the Translocated Signal Responsible for Inducing Systemic Acquired Resistance but Is Required in Signal Transduction. Plant Cell. 1994 Jul;6(7):959–965.[PMC free article] [PubMed] [Google Scholar]
  • Ward ER, Uknes SJ, Williams SC, Dincher SS, Wiederhold DL, Alexander DC, Ahl-Goy P, Metraux JP, Ryals JA. Coordinate Gene Activity in Response to Agents That Induce Systemic Acquired Resistance. Plant Cell. 1991 Oct;3(10):1085–1094.[PMC free article] [PubMed] [Google Scholar]
  • Yalpani N, Silverman P, Wilson TM, Kleier DA, Raskin I. Salicylic acid is a systemic signal and an inducer of pathogenesis-related proteins in virus-infected tobacco. Plant Cell. 1991 Aug;3(8):809–818.[PMC free article] [PubMed] [Google Scholar]
  • Wyatt SD, Shepherd RJ. Isolation and characterization of a virus inhibitor from Phytolacca americana. Phytopathology. 1969 Dec;59(12):1787–1794. [PubMed] [Google Scholar]
  • Zarling JM, Moran PA, Haffar O, Sias J, Richman DD, Spina CA, Myers DE, Kuebelbeck V, Ledbetter JA, Uckun FM. Inhibition of HIV replication by pokeweed antiviral protein targeted to CD4+ cells by monoclonal antibodies. Nature. 1990 Sep 6;347(6288):92–95. [PubMed] [Google Scholar]
Center for Agricultural Molecular Biology and Department of Plant Pathology, Rutgers University, P.O. Box 231, New Brunswick, New Jersey 08903-0231.
Center for Agricultural Molecular Biology and Department of Plant Pathology, Rutgers University, P.O. Box 231, New Brunswick, New Jersey 08903-0231.

Abstract

Pokeweed antiviral protein (PAP), a 29-kD protein isolated from Phytolacca americana, inhibits translation by catalytically removing a specific adenine residue from the large rRNA of the 60S subunit of eukaryotic ribosomes. Transgenic tobacco (Nicotiana tabacum) plants expressing PAP or a variant (PAP-v) were shown to be resistant to a broad spectrum of plant viruses. Expression of PAP-v in transgenic plants induces synthesis of pathogenesis-related proteins and a very weak (<2-fold) increase in salicylic acid levels. Using reciprocal grafting experiments, we demonstrate here that transgenic tobacco rootstocks expressing PAP-v induce resistance to tobacco mosaic virus infection in both N. tabacum NN and nn scions. Increased resistance to potato virus X was also observed in N. tabacum nn scions grafted on transgenic rootstocks. PAP expression was not detected in the wild-type scions or rootstocks that showed virus resistance, nor was there any increase in salicylic acid levels or pathogenesis-related protein synthesis. Grafting experiments with transgenic plants expressing an inactive PAP mutant demonstrated that an intact active site of PAP is necessary for induction of virus resistance in wild-type scions. These results indicate that enzymatic activity of PAP is responsible for generating a signal that renders wild-type scions resistant to virus infection in the absence of increased salicylic acid levels and pathogenesis-related protein synthesis.

Abstract
Full Text
Selected References
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.