Effects of astragalus polysaccharide on apoptosis of myocardial microvascular endothelial cells in rats undergoing hypoxia/reoxygenation by mediation of the PI3K/Akt/eNOS signaling pathway.
Journal: 2017/August - Journal of Cellular Biochemistry
ISSN: 1097-4644
Abstract:
The study explores the effect of astragalus polysaccharide (APS) mediating P13K/Akt/eNOS signaling pathway on apoptosis of myocardial microvascular endothelial cells (MMECs) in hypoxia/reoxygenation (H/R). MMECs were classified into blank, H/R, H/R + 25 mg/L APS, H/R + 50 mg/L APS, H/R + 100 mg/L APS, H/R + LY, and HR + 100 mg/L APS + LY groups. Cell viability was detected using MTT assay and apoptotic cell morphological changes by Hoechst staining. NO content, cell cycle and apoptosis, PI3K/Akt/eNOS signaling pathway proteins were detected using nitrate reductase assay, flow cytometry and Western blotting. An increased cell survival rate, NO content and expression of PI3K/Akt/eNOS signaling pathway associated proteins, and a decreased apoptosis rate was observed in the H/R + 50 mg/L APS and H/R + 100 mg/L APS groups compared with the H/R and H/R + 25 mg/L APS groups. Compared with the H/R + 50 mg/L APS group, the apoptosis rate decreased, whereas the cell survival rate, NO content and expression of PI3K/Akt/eNOS signaling pathway associated proteins increased in the H/R + 100 mg/L APS group. The H/R + LY and HR + 100 mg/L APS + LY groups followed opposite trends. In comparison to the HR + 100 mg/L APS group, the apoptosis rate in the H/R + LY and HR + 100 mg/L APS + LY groups increased, and the cell survival rate, NO content and expression of PI3K/Akt/eNOS signaling pathway associated proteins decreased. Collectively, APS improves the damage caused by H/P by mediating PI3K/Akt/eNOS signaling pathway.
Relations:
Citations
(3)
Drugs
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.