Dietary obesity in the rat induces endothelial dysfunction without causing insulin resistance: a possible role for triacylglycerols.
Journal: 2001/December - Clinical Science
ISSN: 0143-5221
PUBMED: 11672455
Abstract:
Impaired arterial vasorelaxation, due primarily to endothelial dysfunction, is associated with obesity. To clarify the relationship with insulin resistance and other metabolic disturbances, we studied endothelial-dependent and -independent vascular responses in rats with dietary-induced obesity. Dietary-obese rats had significantly higher body weights (10-32%; P<0.001) and fat-pad masses (220-280%; P<0.001) than lean controls, together with raised plasma levels of triacylglycerols (15-80%; P<0.001), non-esterified fatty acids (13-38%; P<0.05) and leptin (85-180%; P<0.001). However, measures of insulin sensitivity (including the hyperinsulinaemic-euglycaemic clamp in a parallel experiment) were comparable with those in controls. Contractions induced in mesenteric arteries by noradrenaline (0.5-8 micromol/l) were comparable in lean and obese groups, but vasorelaxation in noradrenaline-preconstricted arteries was markedly reduced in dietary-obese rats of both sexes. Concentration-response curves to endothelium-dependent vasorelaxants (acetylcholine, A23187 and insulin) showed significant reductions in maximal relaxation (20-95% less than in leans; P<0.001) and significant rightward shifts in EC(40) (concentration giving 40% of maximal response) (P<0.01). Relaxation in response to the direct NO donor, sodium nitroprusside, showed a lesser impairment (12%; P<0.01) in dietary-obese rats. Maximal relaxation to acetylcholine was correlated inversely in both sexes with fat-pad mass (r(2)=0.37, P<0.05) and plasma triacylglycerols (r(2)=0.51, P<0.01), and with leptin in males only (r(2)=0.35, P<0.05). Independent determinants of acetylcholine-induced relaxation were fat mass and plasma triacylglycerols; plasma insulin and insulin sensitivity had no effect. Dietary-induced obesity severely impaired arterial relaxation in both sexes, particularly at the endothelial level. This is not attributable to insulin resistance, but may be related to moderate hypertriglyceridaemia.
Relations:
Citations
(11)
Diseases
(1)
Conditions
(1)
Chemicals
(4)
Organisms
(3)
Anatomy
(2)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.