Dictamnine promotes apoptosis and inhibits epithelial-mesenchymal transition, migration, invasion and proliferation by downregulating the HIF-1α and Slug signaling pathways.
Journal: 2018/November - Chemico-Biological Interactions
ISSN: 1872-7786
Abstract:
Dictamnine (DTM) is a natural alkaloid isolated from the root of Dictamnus dasycarpus Turcz and has been shown to exhibit multiple biological functions, including anti-inflammatory, antifungal, anti-angiogenic and anticancer activity. However, the mechanisms by which dictamnine inhibits tumor growth are not fully understood. In this study, we investigated the effectiveness of dictamnine as a treatment for cancer and to identify the underlying mechanisms of its anticancer activity. Here, dictamnine showed the potent inhibitory activity against HIF-1α and Slug activation induced by hypoxia in various human cancer cell lines. This compound markedly decreased the hypoxia-induced accumulation of HIF-1α and Slug protein in a dose-dependent manner. Further analysis revealed that dictamnine inhibited HIF-1α protein synthesis, without affecting its degradation. Our results demonstrated that dictamnine reduced HIF-1α protein synthesis by downregulating the mTOR/p70S6K/eIF4E and MAPK pathways, and reduced the expression of Slug by inhibiting the GSK-3β/Slug signaling pathway. Moreover, epithelial-mesenchymal transition (EMT) was inhibited in dictamnine-treated tumors by downregulation of HIF-1α and Slug, as reflected by the upregulation of E-cadherin and Occludin, and the downregulation of N-cadherin and Vimentin. Phenomenological experiments showed that dictamnine reduced migration and invasion, inhibited HCT116 cell proliferation and promoted HCT116 cell apoptosis by downregulating HIF-1α and Slug. In vivo studies further confirmed that dictamnine treatment caused significant inhibition of tumor growth in a xenograft tumor model. These findings suggest that dictamnine is a potent cancer inhibitor, providing a rationale for anticancer pathway-targeted therapy.
Relations:
Citations
(2)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.