It is now generally accepted type 2 T helper (Th2) cytokines and some chemoattractants play an essential role in the pathogenesis of the allergic inflammation. The effects of Th2 cytokines, such as interleukin (IL)-4, IL-5, IL-9, and IL-13, account for virtually all the pathophysiological manifestations of allergy and asthma. Moreover, both Th2 cells and the effector cells usually present in the areas of allergic inflammation (basophils, mast cells, and eosinophils) express chemoattractant receptors, such as CCR3, CCR4, CCR8 and CRTH2. Therefore, interactions of eotaxin(s), eotaxin/CCL11, RANTES/CCL5, and MCP-1/CCL2, MCP-2/CCL8, MCP-3/CCL7, MCP-4/CCL13 with CCR3 are responsible for the recruitment of basophils, eosinophils and mast cells, whereas interactions of CCR4 with MDC/CCL22 or TARC/CCL17, CCR8 with I-309/CCL1, and CRTH2 with prostaglandin D(2) play a critical role in the allergen-induced recruitment of Th2 cells in the target tissues of allergic inflammation. The demonstration that Th2-polarized responses against allergens represent the triggering event for the development of allergic diseases, together with the recognition that some chemoattractants are responsible for the recruitment of both Th2 cells and other effector cells of allergic inflammation, can provide the conceptual basis for the development of new therapeutic strategies in allergic conditions.