AppppA, heat-shock stress, and cell oxidation.
Abstract
Salmonella typhimurium LT2 induces a set of heat-shock proteins analogous to those found previously in Escherichia coli. These are virtually the only proteins synthesized after a temperature shift from 28 degrees C to 50 degrees C. Using a two-dimensional thin-layer chromatographic system developed to resolve adenylylated nucleotides, we have found that S. typhimurium and E. coli accumulate P1,P4-diadenosine-5'-tetraphosphate (AppppA), P1-(adenosine-5')-P3-(guanosine-3'-diphosphate-5')-triphosphate (ApppGpp), P1-(adenosine-5')-P4-(guanosine-5')-tetraphosphate (AppppG), P1-(adenosine-5')-P3-(guanosine-5')-triphosphate (ApppG), and P1,P3-diadenosine-5'-triphosphate (ApppA) after heat shock. These same adenylylated nucleotides accumulate after exposure to ethanol, an agent also known to induce the heat-shock response in a variety of cells. AppppA, ApppGpp, AppppG, ApppG, and ApppA were previously shown to accumulate under conditions of oxidation stress. We proposed that these adenylylated nucleotides may be alarmones--i.e., regulatory molecules, alerting cells to the onset of oxidation stress. The finding that these dinucleotides accumulate in response to heat shock suggests that oxidation and heat shock have a common physiological effect on cells. We hypothesize that these dinucleotides signal the onset of these stresses and trigger the "heat-shock response."
Full text
Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.
Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Welch WJ, Garrels JI, Thomas GP, Lin JJ, Feramisco JR. Biochemical characterization of the mammalian stress proteins and identification of two stress proteins as glucose- and Ca2+-ionophore-regulated proteins. J Biol Chem. 1983 Jun 10;258(11):7102–7111. [PubMed] [Google Scholar]
- Li GC. Induction of thermotolerance and enhanced heat shock protein synthesis in Chinese hamster fibroblasts by sodium arsenite and by ethanol. J Cell Physiol. 1983 May;115(2):116–122. [PubMed] [Google Scholar]
- DiDomenico BJ, Bugaisky GE, Lindquist S. The heat shock response is self-regulated at both the transcriptional and posttranscriptional levels. Cell. 1982 Dec;31(3 Pt 2):593–603. [PubMed] [Google Scholar]
- Ashburner M, Bonner JJ. The induction of gene activity in drosophilia by heat shock. Cell. 1979 Jun;17(2):241–254. [PubMed] [Google Scholar]
- Levinson W, Oppermann H, Jackson J. Transition series metals and sulfhydryl reagents induce the synthesis of four proteins in eukaryotic cells. Biochim Biophys Acta. 1980;606(1):170–180. [PubMed] [Google Scholar]
- Neidhardt FC, VanBogelen RA. Positive regulatory gene for temperature-controlled proteins in Escherichia coli. Biochem Biophys Res Commun. 1981 May 29;100(2):894–900. [PubMed] [Google Scholar]
- Yamamori T, Yura T. Genetic control of heat-shock protein synthesis and its bearing on growth and thermal resistance in Escherichia coli K-12. Proc Natl Acad Sci U S A. 1982 Feb;79(3):860–864.[PMC free article] [PubMed] [Google Scholar]
- Neidhardt FC, VanBogelen RA, Lau ET. Molecular cloning and expression of a gene that controls the high-temperature regulon of Escherichia coli. J Bacteriol. 1983 Feb;153(2):597–603.[PMC free article] [PubMed] [Google Scholar]
- VanBogelen RA, Vaughn V, Neidhardt FC. Gene for heat-inducible lysyl-tRNA synthetase (lysU) maps near cadA in Escherichia coli. J Bacteriol. 1983 Feb;153(2):1066–1068.[PMC free article] [PubMed] [Google Scholar]
- Tilly K, VanBogelen RA, Georgopoulos C, Neidhardt FC. Identification of the heat-inducible protein C15.4 as the groES gene product in Escherichia coli. J Bacteriol. 1983 Jun;154(3):1505–1507.[PMC free article] [PubMed] [Google Scholar]
- Cooper S, Ruettinger T. A temperature sensitive nonsense mutation affecting the synthesis of a major protein of Escherichia coli K12. Mol Gen Genet. 1975 Aug 5;139(2):167–176. [PubMed] [Google Scholar]
- Plesset J, Palm C, McLaughlin CS. Induction of heat shock proteins and thermotolerance by ethanol in Saccharomyces cerevisiae. Biochem Biophys Res Commun. 1982 Oct 15;108(3):1340–1345. [PubMed] [Google Scholar]
- Li GC, Werb Z. Correlation between synthesis of heat shock proteins and development of thermotolerance in Chinese hamster fibroblasts. Proc Natl Acad Sci U S A. 1982 May;79(10):3218–3222.[PMC free article] [PubMed] [Google Scholar]
- Li GC, Hahn GM. Ethanol-induced tolerance to heat and to adriamycin. Nature. 1978 Aug 17;274(5672):699–701. [PubMed] [Google Scholar]
- Lepock JR. Involvement of membranes in cellular responses to hyperthermia. Radiat Res. 1982 Dec;92(3):433–438. [PubMed] [Google Scholar]
- Lee PC, Bochner BR, Ames BN. Diadenosine 5',5"'-P1,P4-tetraphosphate and related adenylylated nucleotides in Salmonella typhimurium. J Biol Chem. 1983 Jun 10;258(11):6827–6834. [PubMed] [Google Scholar]
- Rapaport E, Svihovec SK, Zamecnik PC. Relationship of the first step in protein synthesis to ppGpp: formation of A(5')ppp(5')Gpp. Proc Natl Acad Sci U S A. 1975 Jul;72(7):2653–2657.[PMC free article] [PubMed] [Google Scholar]
- Bochner BR, Ames BN. Complete analysis of cellular nucleotides by two-dimensional thin layer chromatography. J Biol Chem. 1982 Aug 25;257(16):9759–9769. [PubMed] [Google Scholar]
- Stephens JC, Artz SW, Ames BN. Guanosine 5'-diphosphate 3'-diphosphate (ppGpp): positive effector for histidine operon transcription and general signal for amino-acid deficiency. Proc Natl Acad Sci U S A. 1975 Nov;72(11):4389–4393.[PMC free article] [PubMed] [Google Scholar]
- Bochner BR, Ames BN. ZTP (5-amino 4-imidazole carboxamide riboside 5'-triphosphate): a proposed alarmone for 10-formyl-tetrahydrofolate deficiency. Cell. 1982 Jul;29(3):929–937. [PubMed] [Google Scholar]
- Neidhardt FC, Bloch PL, Smith DF. Culture medium for enterobacteria. J Bacteriol. 1974 Sep;119(3):736–747.[PMC free article] [PubMed] [Google Scholar]
- Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970 Aug 15;227(5259):680–685. [PubMed] [Google Scholar]
- Yamamori T, Ito K, Nakamura Y, Yura T. Transient regulation of protein synthesis in Escherichia coli upon shift-up of growth temperature. J Bacteriol. 1978 Jun;134(3):1133–1140.[PMC free article] [PubMed] [Google Scholar]
- Wanner BL, Kodaira R, Neidhardt FC. Physiological regulation of a decontrolled lac operon. J Bacteriol. 1977 Apr;130(1):212–222.[PMC free article] [PubMed] [Google Scholar]
- Beckman D, Cooper S. Temperature-sensitive nonsense mutations in essential genes of Escherichia coli. J Bacteriol. 1973 Dec;116(3):1336–1342.[PMC free article] [PubMed] [Google Scholar]
- Ames BN. Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science. 1983 Sep 23;221(4617):1256–1264. [PubMed] [Google Scholar]
- Thor H, Smith MT, Hartzell P, Bellomo G, Jewell SA, Orrenius S. The metabolism of menadione (2-methyl-1,4-naphthoquinone) by isolated hepatocytes. A study of the implications of oxidative stress in intact cells. J Biol Chem. 1982 Oct 25;257(20):12419–12425. [PubMed] [Google Scholar]
- Kosower EM, Kosower NS. Lest I forget thee, glutathione. Nature. 1969 Oct 11;224(5215):117–120. [PubMed] [Google Scholar]
- Mitchell JB, Russo A, Kinsella TJ, Glatstein E. Glutathione elevation during thermotolerance induction and thermosensitization by glutathione depletion. Cancer Res. 1983 Mar;43(3):987–991. [PubMed] [Google Scholar]
- Westman G, Marklund SL. Diethyldithiocarbamate, a superoxide dismutase inhibitor, decreases the radioresistance of Chinese hamster cells. Radiat Res. 1980 Aug;83(2):303–311. [PubMed] [Google Scholar]
- Mitchel RE, Morrison DP. Heat-shock induction of ionizing radiation resistance in Saccharomyces cerevisiae, and correlation with stationary growth phase. Radiat Res. 1982 May;90(2):284–291. [PubMed] [Google Scholar]
- Meister A. Selective modification of glutathione metabolism. Science. 1983 Apr 29;220(4596):472–477. [PubMed] [Google Scholar]
- Demple B, Halbrook J. Inducible repair of oxidative DNA damage in Escherichia coli. Nature. 1983 Aug 4;304(5925):466–468. [PubMed] [Google Scholar]
- Rydström J. Energy-linked nicotinamide nucleotide transhydrogenases. Biochim Biophys Acta. 1977 Oct 5;463(2):155–184. [PubMed] [Google Scholar]
- Fridovich I. The biology of oxygen radicals. Science. 1978 Sep 8;201(4359):875–880. [PubMed] [Google Scholar]
- Ames BN, Tsang TH, Buck M, Christman MF. The leader mRNA of the histidine attenuator region resembles tRNAHis: possible general regulatory implications. Proc Natl Acad Sci U S A. 1983 Sep;80(17):5240–5242.[PMC free article] [PubMed] [Google Scholar]
- Wittwer AJ. Specific incorporation of selenium into lysine- and glutamate- accepting tRNAs from Escherichia coli. J Biol Chem. 1983 Jul 25;258(14):8637–8641. [PubMed] [Google Scholar]
- Wiebauer K, Ogilvie A, Kersten W. The molecular basis of leucine auxotrophy of quinone-treated Escherichia coli. Active site-directed modification of leucyl-tRNA synthetase by 6-amino-7-chloro-5,8-dioxoquinoline. J Biol Chem. 1979 Jan 25;254(2):327–332. [PubMed] [Google Scholar]
- Blanquet S, Plateau P, Brevet A. The role of zinc in 5',5'-diadenosine tetraphosphate production by aminoacyl-transfer RNA synthetases. Mol Cell Biochem. 1983;52(1):3–11. [PubMed] [Google Scholar]
- Goerlich O, Foeckler R, Holler E. Mechanism of synthesis of adenosine(5')tetraphospho(5')adenosine (AppppA) by aminoacyl-tRNA synthetases. Eur J Biochem. 1982 Aug;126(1):135–142. [PubMed] [Google Scholar]
- Hirshfield IN, Zamecnik PC. Thiosine-resistant mutants of Escherichia coli K-12 with growth-medium-dependent lysl-tRNA synthetase activity. I. Isolation and physiological characterization. Biochim Biophys Acta. 1972 Feb 15;259(3):330–343. [PubMed] [Google Scholar]
- Rapaport E, Zamecnik PC. Presence of diadenosine 5',5''' -P1, P4-tetraphosphate (Ap4A) in mamalian cells in levels varying widely with proliferative activity of the tissue: a possible positive "pleiotypic activator". Proc Natl Acad Sci U S A. 1976 Nov;73(11):3984–3988.[PMC free article] [PubMed] [Google Scholar]
- Probst H, Hamprecht K, Gekeler V. Replicon initiation frequency and intracellular levels of ATP, ADP, AMP and of diadenosine 5',5'''-P1,P4-tetraphosphate in ehrlich ascites cells cultured aerobically and anaerobically. Biochem Biophys Res Commun. 1983 Jan 27;110(2):688–693. [PubMed] [Google Scholar]
- Ogilvie A. Determination of diadenosine tetraphosphate (Ap4A) levels in subpicomole quantities by a phosphodiesterase luciferin--luciferase coupled assay: application as a specific assay for diadenosine tetraphosphatase. Anal Biochem. 1981 Aug;115(2):302–307. [PubMed] [Google Scholar]
- Flodgaard H, Klenow H. Abundant amounts of diadenosine 5',5"'-P1,P4-tetraphosphate are present and releasable, but metabolically inactive, in human platelets. Biochem J. 1982 Dec 15;208(3):737–742.[PMC free article] [PubMed] [Google Scholar]
- Zamecnik PC, Rapaport E, Baril EF. Priming of DNA synthesis by diadenosine 5',5"'-P1,P4-tetraphosphate with a double-stranded octadecamer as a template and DNA polymerase alpha. Proc Natl Acad Sci U S A. 1982 Mar;79(6):1791–1794.[PMC free article] [PubMed] [Google Scholar]
- Grummt F. Diadenosine 5',5'''-P1,P4-tetraphosphate triggers initiation of in vitro DNA replication in baby hamster kidney cells. Proc Natl Acad Sci U S A. 1978 Jan;75(1):371–375.[PMC free article] [PubMed] [Google Scholar]
- Saavedra RA, Anderson GR. A cancer-associated lactate dehydrogenase is expressed in normal retina. Science. 1983 Jul 15;221(4607):291–292. [PubMed] [Google Scholar]
- Maness PF, Perry ME, Levy BT. P1,P4-Di(adenosine-5')tetraphosphate inhibits phosphorylation of immunoglobulin G by Rous sarcoma virus pp60src. J Biol Chem. 1983 Apr 10;258(7):4055–4058. [PubMed] [Google Scholar]
- Oppermann H, Levinson W, Bishop JM. A cellular protein that associates with the transforming protein of Rous sarcoma virus is also a heat-shock protein. Proc Natl Acad Sci U S A. 1981 Feb;78(2):1067–1071.[PMC free article] [PubMed] [Google Scholar]
- Nevins JR. Induction of the synthesis of a 70,000 dalton mammalian heat shock protein by the adenovirus E1A gene product. Cell. 1982 Jul;29(3):913–919. [PubMed] [Google Scholar]
- Khandjian EW, Türler H. Simian virus 40 and polyoma virus induce synthesis of heat shock proteins in permissive cells. Mol Cell Biol. 1983 Jan;3(1):1–8.[PMC free article] [PubMed] [Google Scholar]
- Drahos DJ, Hendrix RW. Effect of bacteriophage lambda infection on synthesis of groE protein and other Escherichia coli proteins. J Bacteriol. 1982 Mar;149(3):1050–1063.[PMC free article] [PubMed] [Google Scholar]
- Kochan J, Murialdo H. Stimulation of groE synthesis in Escherichia coli by bacteriophage lambda infection. J Bacteriol. 1982 Mar;149(3):1166–1170.[PMC free article] [PubMed] [Google Scholar]
- Ropp M, Courgeon AM, Calvayrac R, Best-Belpomme M. The possible role of the superoxide ion in the induction of heat-shock and specific proteins in aerobic Drosophila cells during return to normoxia after a period of anaerobiosis. Can J Biochem Cell Biol. 1983 Jun;61(6):456–461. [PubMed] [Google Scholar]
- Tilly K, McKittrick N, Zylicz M, Georgopoulos C. The dnaK protein modulates the heat-shock response of Escherichia coli. Cell. 1983 Sep;34(2):641–646. [PubMed] [Google Scholar]