Antiviral actions of interferons.
Journal: 2002/April - Clinical Microbiology Reviews
ISSN: 0893-8512
Abstract:
Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2',5'-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2'-5'-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-alpha, IFN-beta, and IFN-gamma, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2',5'-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.
Relations:
Content
Citations
(681)
References
(447)
Diseases
(1)
Chemicals
(3)
Genes
(2)
Organisms
(1)
Processes
(3)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Clin Microbiol Rev 14(4): 778-809

Antiviral Actions of Interferons

Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, California 93106-9610
Mailing address: Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA 93106-9610. Phone: (805) 893-3097. Fax: (805) 893-5780. E-mail: ude.bscu.fcsl.icsefil@leumas.

Abstract

Tremendous progress has been made in understanding the molecular basis of the antiviral actions of interferons (IFNs), as well as strategies evolved by viruses to antagonize the actions of IFNs. Furthermore, advances made while elucidating the IFN system have contributed significantly to our understanding in multiple areas of virology and molecular cell biology, ranging from pathways of signal transduction to the biochemical mechanisms of transcriptional and translational control to the molecular basis of viral pathogenesis. IFNs are approved therapeutics and have moved from the basic research laboratory to the clinic. Among the IFN-induced proteins important in the antiviral actions of IFNs are the RNA-dependent protein kinase (PKR), the 2′,5′-oligoadenylate synthetase (OAS) and RNase L, and the Mx protein GTPases. Double-stranded RNA plays a central role in modulating protein phosphorylation and RNA degradation catalyzed by the IFN-inducible PKR kinase and the 2′-5′-oligoadenylate-dependent RNase L, respectively, and also in RNA editing by the IFN-inducible RNA-specific adenosine deaminase (ADAR1). IFN also induces a form of inducible nitric oxide synthase (iNOS2) and the major histocompatibility complex class I and II proteins, all of which play important roles in immune response to infections. Several additional genes whose expression profiles are altered in response to IFN treatment and virus infection have been identified by microarray analyses. The availability of cDNA and genomic clones for many of the components of the IFN system, including IFN-α, IFN-β, and IFN-γ, their receptors, Jak and Stat and IRF signal transduction components, and proteins such as PKR, 2′,5′-OAS, Mx, and ADAR, whose expression is regulated by IFNs, has permitted the generation of mutant proteins, cells that overexpress different forms of the proteins, and animals in which their expression has been disrupted by targeted gene disruption. The use of these IFN system reagents, both in cell culture and in whole animals, continues to provide important contributions to our understanding of the virus-host interaction and cellular antiviral response.

Abstract

ACKNOWLEDGMENTS

I thank the members of my laboratory for their helpful discussions and the many investigators within the international IFN community for their basic and clinical research contributions that made this review possible.

Work from my laboratory was supported in part by research grants from the National Institute of Allergy and Infectious Diseases (AI-12520 and AI-20611).

ACKNOWLEDGMENTS

REFERENCES

REFERENCES

References

  • 1. Abendroth A, Slobedman B, Lee E, Mellins E, Wallace M, Arvin A MModulation of major histocompatibility class II protein expression by varicella-zoster virus. J Virol. 2000;74:1900–1907.[Google Scholar]
  • 2. Abraham N, Stojdl D F, Duncan P I, Méthot N, Ishii T, Dubé M, Vanderhyden B C, Atkins H L, Gray D A, McBurney M W, Koromilas A E, Brown E G, Sonenberg N, Bell J CCharacterization of transgenic mice with targeted disruption of the catalytic domain of the double-stranded RNA-dependent protein kinase, PKR. J Biol Chem. 1999;274:5953–5962.[PubMed][Google Scholar]
  • 3. Aebi M, Fäh J, Hurt N, Samuel C E, Thomis D, Bazzigher L, Pavlovic J, Haller O, Staeheli PcDNA Structures and regulation of two interferon-induced human Mx proteins. Mol Cell Biol. 1989;9:5062–5072.[Google Scholar]
  • 4. Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson J D Molecular biology of the cell. 3rd ed. New York, N.Y: Garland Publishing; 1994. [PubMed][Google Scholar]
  • 5. Alcami A, Symons J, Smith G LThe vaccinia virus soluble alpha/beta interferon receptor binds to the cell surface and protects cells from the antiviral effects of IFN. J Virol. 2000;74:11230–11239.[Google Scholar]
  • 6. Alexander W S, Starr R, Fenner J F, Scott C L, Handman E, Sprigg N S, Corbin J E, Cornish A L, Darwiche R, Owczarek C M, Kay T W, Nicola N A, Hertzog P J, Metcalf D, Hilton D JSOCS1 is a critical inhibitor of interferon gamma signaling and prevents the potentially fatal neonatal actions of this cytokine. Cell. 1999;98:597–608.[PubMed][Google Scholar]
  • 7. Angel J, Franco M A, Greenberg H B, Bass DLack of a role for type I and type II interferons in the resolution of rotavirus-induced diarrhea and infection in mice. J Interferon Res. 1999;19:655–659.[PubMed][Google Scholar]
  • 8. Arnheiter H, Frese M, Kamadur R, Meier E, Haller OMx transgenic mice-animal models of helath. Curr Top Microbiol. 1996;206:119–147.[PubMed][Google Scholar]
  • 9. Aurisicchio L, Delmastro P, Salucci V, Paz O G, Rovere P, Ciliberto G, La Monica N, Palombo FLiver-specific alpha 2 interferon gene expression results in protection from induced hepatitis. J Virol. 2000;74:4816–4823.[Google Scholar]
  • 10. Bach E A, Aguet M, Schreiber R DThe IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol. 1997;15:563–591.[PubMed][Google Scholar]
  • 11. Baglioni C, Maroney P A, West D K2′,5′ Oligo(A) polymerase activity and inhibition of viral RNA synthesis in interferon treated HeLa cells. Biochemistry. 1979;18:1765–1770.[PubMed][Google Scholar]
  • 12. Balachandran S, Kim C N, Yeh W-C, Mak T W, et al Activation of the dsRNA-dependent protein kinase, PKR, induces apoptosis through FADD-mediated death signaling. EMBO J. 1998;23:6888–6902.[Google Scholar]
  • 13. Balachandran S, Roberts P C, Brown L E, Truong H, Pattnaik A K, Archer D R, Barber G NEssential role for the dsRNA-dependent protein kinase PKR in innate immunity to viral infection. Immunity. 2000;13:129–141.[PubMed][Google Scholar]
  • 14. Ball L AInduction of 2′5′-oligoadenylate synthetase activity and a new protein by chick interferon. Virology. 1979;94:282–296.[PubMed][Google Scholar]
  • 15. Bandyopadhyay S K, Leonard G T, Bandyopadhyay T, Stark G R, Sen G CTranscriptional induction by double-stranded RNA is mediated by interferon-inducible response elements withouth activation of interferon-stimulated gene factor 3. J Biol Chem. 1995;270:19624–19629.[PubMed][Google Scholar]
  • 16. Barber G N, Edelhoff S, Katze M G, Disteche C MChromosomal assignment of the interferon-inducible double-stranded RNA-dependent protein kinase (PRKR) to human chromosome 2p21–p22 and mouse chromosome. Genomics. 1993;16:765–767.[PubMed][Google Scholar]
  • 17. Barber G N, Tomita J, Hovanessian A G, Meurs E, Katze M G. Functional expression and characterization of the interferon-induced double-stranded RNA activated p68 protein kinase from E. coli. Biochemistry. 1991;30:10356–10361.[PubMed]
  • 18. Barber G N, Thompson S, Lee T G, Strom T, Jagus R, Darveau A, Katze M GThe 58-kilodalton inhibitor of the interferon induced double-stranded RNA-activated protein kinase is a tetratricopeptide repeat protein with oncogenic properties. Proc Natl Acad Sci USA. 1994;91:4278–4282.[Google Scholar]
  • 19. Barber G N, Wambach M, Thompson S, Jagus R, Katze M GMutants of the RNA-dependent protein kinase (PKR) lacking double-stranded RNA binding domain I can act as transdominant inhibitors and induce malignant transformation. Mol Cell Biol. 1995;15:3138–3146.[Google Scholar]
  • 20. Barber G N, Wambach M, Wong M L, Dever T E, Hinnebusch A G, Katze M GTranslational regulation by the interferon-induced double-stranded-RNA-activated 68-kDa protein kinase. Proc Natl Acad Sci USA. 1993;90:4621–4625.[Google Scholar]
  • 21. Basler C F, Wang X Y, Muhlberger E, Volchkov V, Paragas J, Klenk H D, Garcia-Sastre A, Palese PThe Ebola virus VP35 protein functions as a type IIFN antagonist. Proc Natl Acad Sci USA. 2000;97:12289–12294.[Google Scholar]
  • 22. Bass B LRNA editing and hypermutation by adenosine deamination. Trends Biochem Sci. 1997;22:157–162.[PubMed][Google Scholar]
  • 23. Bass B L, Weintraub HAn unwinding activity that covalently modified its double-stranded RNA substrate. Cell. 1988;55:1089–1098.[PubMed][Google Scholar]
  • 24. Bass B L, Nishikura K, Keller W, Seeburg P H, Emeson R B, O'Connell M A, Samuel C E, Herbert AA standardized nomenclature for adenosine deaminases that act in RNA. RNA. 1997;3:947–949.[Google Scholar]
  • 25. Bass B LDouble-stranded RNA as a template for gene silencing. Cell. 2000;101:235–238.[PubMed][Google Scholar]
  • 26. Benech P, Mory Y, Revel M, Chebath JStructure of two forms of the interferon-induced (2′-5′) oligo A synthetase of human cells based on cDNAs and gene sequences. EMBO J. 1985;4:2249–2256.[Google Scholar]
  • 27. Benech P, Merlin G, Revel M, Chebath JThe 3′-end structure of the human (2′-5′) oligo A synthetase gene: prediction of two distinct proteins with cell type-specific expression. Nucleic Acids Res. 1985;13:1267–1281.[Google Scholar]
  • 28. Benech P, Vigneron M, Peretz D, Revel M, Chebath JInterferon-responsive regulatory elements in the promoter of the human 2′,5′-oligo(A) synthetase gene. Mol Cell Biol. 1987;7:4498–4504.[Google Scholar]
  • 29. Benkirane M, Neuveut C, Chun R F, Smith S M, Samuel C E, Gatignol A, Jeang K TOncogenic potential of TAR RNA-binding protein TRBP and its regulatory interaction with RNA-dependent protein kinase PKR. EMBO J. 1997;16:611–624.[Google Scholar]
  • 30. Bergman M, Garcia-Sastre A, Carnero E, Pehamberger H, Wolff K, Palese P, Muster, T TInfluenza virus NS1 protein counteracts PKR-mediated inhibition of replication. J Virol. 2000;74:6203–6206.[Google Scholar]
  • 31. Berry M J, Knutson G S, Lasky S R, Munemutsu S M, Samuel C EMechanism of interferon action: purification and substrate specificites of the double-stranded RNA-dependent protein kinase from untreated and interferon-treated mouse fibroblasts. J Biol Chem. 1985;260:11240–11247.[PubMed][Google Scholar]
  • 32. Bevilacqua P C, Cech TMinor-groove recognition of double-stranded RNA of the double-stranded RNA-binding domain from the RNA-activated protein kinase PKR. Biochemistry. 1996;35:9983–9994.[PubMed][Google Scholar]
  • 33. Bevilacqua P C, George C X, Samuel C E, Cech T RBinding of the protein kinase PKR to RNAs with secondary structure defects: role of the tandem A-G mismatch and noncontiguous helixes. Biochemistry. 1998;37:6303–6316.[PubMed][Google Scholar]
  • 34. Bigger C B, Brasky K M, Lanford R EDNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J Virol. 2001;75:7059–7066.[Google Scholar]
  • 35. Bilbao G, Contreras J L, Zhang H, et al Adenovirus-mediated gene expression in vivo is enhanced by the antapoptotic Bcl-2 gene. J Virol. 1999;73:6992–7000.[Google Scholar]
  • 36. Binder G K, Griffin D EInterferon-γ-mediated site-specific clearance of alphavirus from CNS neurons. Science. 2001;293:303–306.[PubMed][Google Scholar]
  • 37. Biron C ARole of early cytokines, including α and β interferons (IFN-α/β), in innate and adaptive immune respones to viral infections. Semin Immunol. 1998;5:383–390.[PubMed][Google Scholar]
  • 38. Biron C A, Sen G C. Interferons and other cytokines. In: Knipe D M, Howley P M, Griffin D E, Martin M, Roizman B, Straus S E, editors. Fields virology. 4th ed. Philadelphia, Pa: Lippincott-Raven; 2001. pp. 321–351. [PubMed]
  • 39. Biron C A, Nguyen K B, Pien G C, Cousens L P, Salazar-Mather T PNatural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol. 1999;17:189–220.[PubMed][Google Scholar]
  • 40. Bisbal C, Martinand C, Silhol M, Lebleu B, Salehzada T. Cloning and characterization of a RNAse L inhibitor. A new component of the interferon-regulated 2-5A pathway. J Biol Chem. 1995;270:13308–13317.[PubMed]
  • 41. Black T L, Barber G N, Katze M GDegradation of the interferon-induced 68,000 Mr protein kinase by poliovirus requires RNA. J Virol. 1993;67:791–800.[Google Scholar]
  • 42. Blatt L M, Davis J M, Klein S B, Taylor M WThe biologic activity and molecular characterization of a novel synthetic interferon-alpha species, consensus interferon. J Interferon Cytokine Res. 1996;16:489–499.[PubMed][Google Scholar]
  • 43. Blight K J, Kolykhalov A A, Rice C MEfficient initiation of HCV RNA replication in cell culture. Science. 2000;290:1972–1974.[PubMed][Google Scholar]
  • 44. Boehm U, Klamp T, Groot M, Howard J CCellular responses to interferon-gamma. Annu Rev Immunol. 1997;15:749–795.[PubMed][Google Scholar]
  • 45. Bourara K, Litvak S, Araya AGeneration of G-to-A and C-to-U changes in HIV-1 transcripts by RNA editing. Science. 2000;289:1564–1566.[PubMed][Google Scholar]
  • 46. Brand S R, Kobayashi R, Mathews M BThe Tat protein of human immunodeficiency virus type 1 is a substrate and inhibitor of the interferon-induced, virally activated protein kinase PKR. J Biol Chem. 1997;272:8388–8395.[PubMed][Google Scholar]
  • 47. Burns C M, Chu H, Rueter S M, Hutchinson L K, Canton H, Sanders-Bush E, Emeson R BRegulation of serotonin 2C receptor G-protein coupling by RNA editing. Nature. 1997;387:303–308.[PubMed][Google Scholar]
  • 48. Burrows J M, Burrows S R, Poulsen L M, Sculley T B, Moss D J, Khanna RUnusually high frequency of Epstein-Barr virus genetic variants in Papua New Guinea that can escape cytotoxic T-cell recognition: implications for virus evolution. J Virol. 1996;70:2490–2496.[Google Scholar]
  • 49. Cantin E, Tanamachi B, Openshaw H, Mann J, Clarke KGamma interferon (IFN-gamma) receptor null-mutant mice are more susceptible to herpes simplex virus type 1 infection than IFN-gamma ligand null-mutant mice. J Virol. 1999;73:5196–5200.[Google Scholar]
  • 50. Cantin E, Tanamachi B, Openshaw HRole for gamma interferon in control of herpes simplex virus type 1 reactivation. J Virol. 1999;73:3418–3423.[Google Scholar]
  • 51. Casey J L, Gerin J LHDV RNA-editing: specific modification of adenosine in the antigenomic RNA. J Virol. 1995;69:7593–7600.[Google Scholar]
  • 52. Cassady K A, Gross M, Roizman BThe herpes simplex virus Us11 protein effectively compensates for the γ34.5 gene if present before activation of protein kinase R by precluding its phosphorylation and that of the α subunit of eukaryotic translation initiation factor 2. J Virol. 1998;72:8620–8626.[Google Scholar]
  • 53. Cattaneo RBiased A → I hypermutation of animal RNA virus genomes. Curr Opin Genet Dev. 1994;4:895–900.[PubMed][Google Scholar]
  • 54. Cattaneo R, Billeter M AMutations and A/I hypermutations in measles virus persistent infections. Curr Top Microbiol Immunol. 1992;176:73–74.[PubMed][Google Scholar]
  • 55. Cattaneo R, Schmid A, Eschle D, Baczko K, ter Meulen V, Billeter M ABiased hypermutation and other genetic changes in defective measles viruses in human brain infections. Cell. 1988;55:255–265.[PubMed][Google Scholar]
  • 56. Cavanaugh V J, Guidotti L G, Chisari F VInhibition of hepatitis B virus replication during adenovirus and cytomegalovirus infections in transgenic mice. J Virol. 1998;72:2630–2637.[Google Scholar]
  • 57. Cayley P J, Davies J A, McCullagh K G, Kerr I MActivation of the ppp(A2′p)nA system in interferon-treated herpes simplex virus infected cells and evidence for novel inhibitors of the ppp(A2′p)nA-dependent Rnase. Eur J Biochem. 1984;143:165–174.[PubMed][Google Scholar]
  • 58. Chakraborty N G, Li L, Sporn J R, Kurtzman S H, Ergin M T, Mukherji BEmergence of regulatory CD4+ T cell response to repetitive stimulation with antigen-presenting cells in vitro: implications in designing antigen-presenting cell-based tumor vaccines. J Immunol. 1999;162:5576–5583.[PubMed][Google Scholar]
  • 59. Chakravarti D, Ogryzko V, Kao H Y, et al A viral mechanism for inhibition of p300 and PCAF acetyltransferase activity. Cell. 1999;96:393–403.[PubMed][Google Scholar]
  • 60. Chang Y J E, Laimins L AMicroarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol. 2000;74:4174–4182.[Google Scholar]
  • 61. Chang C H, Fontes J D, Peterlin M, Flavell R AClass II transactivator (CIITA) is sufficient for the inducible expression of major histocompatibility complex class II genes. J Exp Med. 1994;180:1367–1374.[Google Scholar]
  • 62. Chebath J, Benech P, Hovanessian A, Galabru J, et al Four different forms of interferon-treated 2′,5′-oligo(A) synthetase identified by immunoblotting in human cells. J Biol Chem. 1987;262:3852–3857.[PubMed][Google Scholar]
  • 63. Chebath J, Benech P, Revel M, Vigneron MConstitutive expression of 2′5′ oligo A synthetase conferes resisteance to picornavirus infection. Nature. 1987;330:587–588.[PubMed][Google Scholar]
  • 64. Chebath J, Merlin G, Metz R, Benech P, Revel MInterferon-induced 56,000 Mr protein and its mRNA in human cells; molecular cloning and partial sequence of the cDNA. Nucleic Acids Res. 1983;11:1213–1226.[Google Scholar]
  • 65. Chek-Coccia E M, Del Russo N, Stellacci E, Orsatti R, Benedetti E, Marziali G, Hiscott J, Battistini AActivation and repression of the 2-5A synthetase and p21 gene promoters by IRF-1 and IRF-2. Oncogene. 1999;18:2129–2137.[PubMed][Google Scholar]
  • 66. Chen H, Lee J M, Wang Y, Huang D P, et al The Epstein-Barr virus latency BamHI-Q promotes is positively regulated by STATs and Zta interference with JAK/STAT activation leads to loss of BamHI-Q promoter activity. Proc Natl Acad Sci USA. 1999;96:9339–9344.[Google Scholar]
  • 67. Chong K L, Feng L, Schappert K, Meurs E, Donahue T, Friesen J D, Hovanessian A G, Williams B RHuman p68 kinase exhibits growth suppression in yeast and homology to the translational regulator GCN2. EMBO J. 1992;11:1553–1562.[Google Scholar]
  • 68. Chung K M, Lee J, Kim J E, Song O K, Cho S, Lim J, Seedorf M, Hahm B, Jang J KNonstructural protein 5A of hepatitis C virus inhibits the function of karyopherin beta3. J Virol. 2000;74:5233–5241.[Google Scholar]
  • 69. Circle D A, Neel O D, Robertson H D, Clarke P A, Mathews M BSurprising specificity of PKR binding to delta agent genomic RNA. RNA. 1997;3:438–448.[Google Scholar]
  • 70. Clemens M J, Elia AThe double-stranded RNA-dependent protein kinase PKR: structure and function. J Interferon Cytokine Res. 1997;17:503–524.[PubMed][Google Scholar]
  • 71. Clemens M J, Hershey J W B, Hovanessian A C, Jacobs B L, Katze M G, Kaufman R J, Lengyel P, Samuel C E, Sen G C, Williams B R GPKR: proposed nomenclature for the RNA-dependent protein kinase induced by interferon. J Interferon Res. 1993;13:241.[PubMed][Google Scholar]
  • 72. Coccia E M, Romeo G, Nissim A, Marziali G, et al A full-length murine 2-5A synthetase cDNA transfected in NIH-3T3 cells impairs EMCV but not VSV replication. Virology. 1990;179:228–233.[PubMed][Google Scholar]
  • 73. Colamonici O R, Domanski P, Sweitzer S M, Larner A, Buller R M LVaccinia virus B18R gene encodes a typ3e I interferon binding protein that blocks interferon alpha transmembrane signaling. J Biol Chem. 1995;270:15974–15978.[PubMed][Google Scholar]
  • 74. Collins T, Korman A J, Wake C T, Boss J M, Kappes D J, Fiers W, Ault K A, Gimbrone M A, Jr, Strominger J L, Pober J SImmune interferon activates multiple class II major histocompatibility complex genes and the associated invariant chain gene in human endothelial cells and dermal fibroblasts. Proc Natl Acad Sci USA. 1984;81:4917–4921.[Google Scholar]
  • 75. Dalton D K, Pitts-Meek S, Keshav S, Figari I S, Bradley A, Stewart T AMultiple defects of immune cell function in mice with disrupted interferon-gamma genes. Science. 1993;259:1739–1742.[PubMed][Google Scholar]
  • 76. Darnell J E., Jr STATs and gene regulation. Science. 1997;277:1630–1635.[PubMed]
  • 77. Darnell J E, Jr, Kerr I M, Stark G MJak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–1421.[PubMed][Google Scholar]
  • 78. Datta B, Min W, Burma W, Lengyel PIncrease in p202 expression during skeletal muscle differentiation: inhibition of MyoD protein expression and activity by p202. Mol Cell Biol. 1998;18:1074–1083.[Google Scholar]
  • 79. David M, Chen H E, Goelz S, Larner A C, Neel B GDifferential regulation of the alpha/beta interferon-stimulated Jak/Stat pathway by the SH2 domain-containing tyrosine phosphatase SHPTP1. Mol Cell Biol. 1995;15:7050–7058.[Google Scholar]
  • 80. David M, Petricoin E, Benjamin C, Pine R, Weber M J, Larner A CRequirement for MAP kinase (ERK2) activity in interferon alpha-and interferon beta-stimulated gene expression through STAT proteins. Science. 1995;269:1721–1723.[PubMed][Google Scholar]
  • 81. David M, Zhou G, Pin R, Dixon J E, Larner A CThe SH2 domain-containing tyrosine phosphatase PTP1D is required for interferon α/β-induced gene expression. J Biol Chem. 1996;271:15862–15865.[PubMed][Google Scholar]
  • 82. Davis G L, Esteban-Mur R, Rustgi V, Hoefs J, Gordon S C, Trepo C, Shiffman M L, Zeuzem S, Craxi A, Ling M H, Albrecht J. Interferon alfa-2b alone or in combination with ribavirin for the treatment of relapse of chronic hepatitis C. International Hepatitis Interventional Therapy Group. N Engl J Med. 1998;339:1493–1499.[PubMed]
  • 83. Demarchi F, Gutierrez M I, Giacca MHuman immunodeficiency virus type 1 tat protein activates transcription factor NF-κB through the cellular interferon-inducible, double-stranded RNA-dependent protein kinase, PKR. J Virol. 1999;73:7080–7086.[Google Scholar]
  • 84. Deonarain R, Alcamí A, Alexiou M, Dallman M J, Gewert D R, Porter A CImpaired antiviral response and alpha/beta interferon induction in mice lacking beta interferon. J Virol. 2000;74:3404–3409.[Google Scholar]
  • 85. DePamphilis M DNA replication in eukaryotic cells. Cold Spring Harbor, New York: Cold Spring Harbor Press; 1996. pp. 751–773. , [PubMed][Google Scholar]
  • 86. Der S D, Yang Y-L, Weissmann C, Williams B R GA double-stranded RNA-activated protein kinase dependent pathway mediating stress-induced apoptosis. Proc Natl Acad Sci USA. 1997;94:3279–3283.[Google Scholar]
  • 87. Der S D, Zhou A, Williams B R, Silverman R HIdentification of genes differentially regulated by interferon alpha, beta, or gamma using oligonucleotide arrays. Proc Natl Acad Sci USA. 1998;95:15623–15628.[Google Scholar]
  • 88. Desai S Y, Patel R C, Sen G C, Malhotra P, Ghadge G D, Thimmapaya BActivation of interferon-inducible 2′-5′ oligoadenylate synthetase by adenoviral RNA. J Biol Chem. 1995;270:3454–3461.[PubMed][Google Scholar]
  • 89. Dessens J T, Nuttall P AMx1-based resistance to thogoto virus in A2G mice is bypassed in tick-mediated virus delivery. J Virol. 1998;72:8362–8364.[Google Scholar]
  • 90. Dever T E, Sripriya R, McLachlin J R, Lu J, et al Disruption of cellular translational control by viral truncated eukaryotic translation initiation factor 2alpha kinase homolog. Proc Natl Acad Sci USA. 1998;95:4164–4169.[Google Scholar]
  • 91. DeYoung K I, Ray M E, Suy Y A, Anzick S I, Johnstone R W, Trapani J A, Meltzer P S, Trent J MCloning a novel member of the human interferon-inducible gene family associated with control of tumorigenicity in a model of human melanoma. Oncogene. 1997;15:453–457.[PubMed][Google Scholar]
  • 92. Diamond M S, Roberts T G, Edgil D, Lu B, Ernst J, Harris EModulation of dengue virus infection in human cells by alpha, beta, and gamma interferons. J Virol. 2000;74:4957–4966.[Google Scholar]
  • 93. Diaz M O, Bohlander S, Allen GNomenclature of the human interferon genes. J Interferon Cytokine Res. 1996;16:179–180.[PubMed][Google Scholar]
  • 94. Diaz-Guerra M, Rivas C, Esteban MActivation of the IFN-inducible enzyme RNase L causes apoptosis of animal cells. Virology. 1997;236:354–363.[PubMed][Google Scholar]
  • 95. Didcock L, Young D F, Goobourn S, Randall R ESendai virus and simian virus 5 block activation of interferon-responsive genes: importance for virus pathogenesis. J Virol. 1999;73:3125–3133.[Google Scholar]
  • 96. Dideock L, Young D F, Goodburn S, Randall R EThe V protein of simian virus 5 inhibits interferon signalling by targeting STAT1 for proteasome-mediated degradation. J Virol. 1999;73:9928–9933.[Google Scholar]
  • 97. Dobbelstein M, Shenk TProtection against apoptosis by the vaccinia virus SP!-2 (B13R) gene product. J Virol. 1996;70:6479–6485.[Google Scholar]
  • 98. Domingo E, Holland J JRNA virus mutations and fitness for survival. Annu Rev Microbiol. 1997;51:151–178.[PubMed][Google Scholar]
  • 99. Dong B, Silverman R H2-5A-dependent RNase molecules dimerize during activation by 2-5A. J Biol Chem. 1995;270:4133–4137.[PubMed][Google Scholar]
  • 100. Dong B, Xu L, Zhou A, Hassel B A, et al Intrinsic molecular activities of the interferon-induced 2-5A-dependent RNase. J Biol Chem. 1994;269:14153–14158.[PubMed][Google Scholar]
  • 101. Donze O, Dostie J, Sonenberg NRegulatable expression of the interferon-induced double stranded RNA dependent protein kinase PKR induces apoptosis and Fas receptor expression. Virology. 1999;256:322–329.[PubMed][Google Scholar]
  • 102. Donze O, Jagus R, Koromilas A E, Hershey J W B, Sonenberg NAbrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J. 1995;14:3828–3834.[Google Scholar]
  • 103. Drake J W, Holland J JMutation rates among RNA viruses. Proc Natl Acad Sci USA. 1999;96:13910–13913.[Google Scholar]
  • 104. Dreiding P, Staeheli P, Haller OInterferon-induced protein Mx accumulates in nuclei of mouse cells expressing resistance to influenza viruses. Virology. 1985;140:192–196.[PubMed][Google Scholar]
  • 105. Durbin J E, Hackenmiller R, Simon M C, Levy D ETargeted disruption of the mouse Stat1 gene results in compromised innate immunity to viral disease. Cell. 1996;84:443–450.[PubMed][Google Scholar]
  • 106. Endo T A, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K, Matsumoto A, Tanimura S, Ohtsubo M, Misawa H, Miyazaki T, Leonor N, Taniguchi T, Fujita T, Kanakura Y, Komiya S, Yoshimura AA new protein containing an SH2 domain that inhibits JAK kinases. Nature. 1997;386:921–924.[PubMed][Google Scholar]
  • 107. Everett H, McFadden GApoptosis: an innate immune response to virus infection. Trends Microbiol. 1999;7:160–165.[PubMed][Google Scholar]
  • 108. Fantuzzi G, Reed D A, Dinarello C AIL-12-induced IFN-gamma is dependent on caspase-1 processing of the IL-18 precursor. J Clin Investig. 1999;104:761–767.[Google Scholar]
  • 109. Fasler-Kan E, Pansky A, Wiederkehr M, Battegary M, Heim M HInterferon-alpha activates signal transducers and activators of transcription 5 and 6 in Daudi cells. Eur J Biochem. 1998;254:514–519.[PubMed][Google Scholar]
  • 110. Feng G-S, Chong K, Kumar A, Williams B R GIdentification of double-stranded RNA-binding domains in the interferon-induced double-stranded RNA-activated p68 kinase. Proc Natl Acad Sci USA. 1992;89:5447–5451.[Google Scholar]
  • 111. Fields S, Winter GNucleotide-sequence heterogeneity and sequence rearrangements in influenza virus cDNA. Gene. 1981;15:207–214.[PubMed][Google Scholar]
  • 112. Finter N BThe naming of cats—and alpha-interferons. Lancet. 1996;348:348–349.[PubMed][Google Scholar]
  • 113. Floyd-Smith G2′,5′ An-dependent endoribonuclease: enzyme levels are regulated by IFN-β, IFN-γ, and cell culture conditions. J Cell Biochem. 1988;38:13–21.[PubMed][Google Scholar]
  • 114. Floyd-Smith G, Denton J SA 2′,5′-dependent endonuclease: tissue distribution in BALB/c mice and the effects of IFN-β treatment and anti-IFN immunoglobulin on the levels of the enzyme. J Interferon Res. 1988;8:517–525.[PubMed][Google Scholar]
  • 115. Floyd-Smith G, Slattery E, Lengyel PInterferon action: RNA cleavage pattern of a 2′-5′ oligoadenylate-dependent endonuclease. Science. 1981;212:1030–1032.[PubMed][Google Scholar]
  • 116. Foster G R, Germain C, Jones M, Lechler R I, Lombardi GHuman T cells elicit IFN-alpha secretion from dendritic cells following cell to cell interationis. Eur J Immunol. 2000;30:3228–3235.[PubMed][Google Scholar]
  • 117. Formella S, Jehle C, Sauder C, Staeheli P, Schwemmle MSequence variability of Borna disease virus: resistance to superinfection may contribute to high genome stability in persistently infected cells. J Virol. 2000;74:7878–7783.[Google Scholar]
  • 118. François C, Duverlie G, Rebouillat D, Khorsi H, Castelain S, Blum H E, Gatignol A, Wychowski C, Moradpour D, Meurs E FExpression of hepatitis C virus proteins interferes with the antiviral action of interferon independently of PKR-mediated control of protein synthesis. J Virol. 2000;74:5587–5596.[Google Scholar]
  • 119. Frese M, Kochs G, Meier-Dieter U, Siebler J, Haller OHuman MxA protein inhibits tick-borne Thogoto virus but not Dhori virus. J Virol. 1995;69:3904–3909.[Google Scholar]
  • 120. Fujii Y, Shimizu T, Kusumoto M, Kyogoku Y, Taniguchi T, Hakoshima TCrystal structure of an IRF-DNA complex reveals novel DNA recognition and cooperative binding to a tandem repeat of core sequences. EMBO J. 1999;18:5028–5041.[Google Scholar]
  • 121. Gagliardini V, Fernandez P-A, Lee R K K, et al Prevention of vertebrate neuronal death by the crmA gene. Science. 1994;263:826–828.[PubMed][Google Scholar]
  • 122. Galabru J, Hovanessian A GAutophosphorylation of the protein kinase dependent on double-stranded RNA. J Biol Chem. 1987;262:15538–15544.[PubMed][Google Scholar]
  • 123. Gale M, Katze M GMolecular mechanisms of interferon resistance mediated by viral-directed inhibition of PKR, the interferon-induced protein kinase. Pharmacol Ther. 1998;78:29–46.[PubMed][Google Scholar]
  • 124. Gale M, Jr, Blakely C M, Kwieciszewski G, Tan S L, Dossett M, Tang N M, Korth M J, Polyak S J, Gretch D R, Katze M GControl of PKR protein kinase by hepatitis C virus nonstructural 5A protein: molecular mechanisms of kinase regulation. Mol Cell Biol. 1998;18:5208–5218.[Google Scholar]
  • 125. Gale M, Kwieciszewski B, Dossett M, et al Antiapoptotic and oncogenic potentials of hepatitis C virus are linked to interferon resistance by viral repression of the PKR protein kinase. J Virol. 1999;73:6506–6516.[Google Scholar]
  • 126. Gale M, Jr, Korth M J, Tang N M, Tan S L, Hopkins D A, Dever T E, Polyak S J, Gretch D R, Katze M GEvidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology. 1997;230:217–227.[PubMed][Google Scholar]
  • 127. Gale M, Jr, Tan S L, Katze M GTranslational control of viral gene expression in eukaryotes. Microbiol Mol Biol Rev. 2000;64:239–280.[Google Scholar]
  • 128. Gao J, Morrison D C, Parmely T J, Russell S W, Murphy W JAn interferon-gamma-activated site (GAS) is necessary for full expression of the mouse iNOS gene in response to interferon-gamma and lipopolysaccharide. J Biol Chem. 1997;272:1226–1230.[PubMed][Google Scholar]
  • 129. Gao S J, Boshoff C, Jayachandra C, et al KSHV ORF K9 (vIRF) is an oncogene which inhibit the interferon signaling pathway. Oncogene. 1997;15:1979–1985.[PubMed][Google Scholar]
  • 130. Garcia-Sastre A, Durbin R K, Zheng H Y, Palese P, et al The role of interferon in influenza virus tissue tropism. J Virol. 1998;72:8550–8558.[Google Scholar]
  • 131. García-Sastre A, Egorov A, Matassov D, Brandt S, Levy D E, Durbin J E, Palese P, Muster TInfluenza A virus lacking the NS1 gene replicates in interferon-deficient systems. Virology. 1998;252:324–330.[PubMed][Google Scholar]
  • 132. Garcin D, Curran J, Kolakofsky DSendai virus C proteins must interact directly with cellular components to interfere with interferon action. J Virol. 2000;74:8823–8830.[Google Scholar]
  • 133. Garcin D, Latorre P, Kolakofsy DSendai virus C proteins counteract the interferon-mediated induction of an antiviral state. J Virol. 1999;73:6559–6565.[Google Scholar]
  • 134. Gardiner K, Horisberger M, Kraus J, Tantravahi U, Korenberg J, Rao V, Reddy S, Patterson DAnalysis of human chromosome 21: correlation of physical and cytogenetic maps: gene and CpG island distributions. EMBO J. 1990;9:25–34.[Google Scholar]
  • 135. Geiger K D, Nash T C, Sawyer S, Krahl T, Patstone G, Reed J C, Krajewski S, Dalton D, Buchmeier M J, Sarvetnick NInterferon-gamma protects against herpes simplex virus type 1-mediated neuronal death. Virology. 1997;238:189–197.[PubMed][Google Scholar]
  • 136. George C X, Samuel C EHuman RNA specific adenosine deaminase ADAR1 transcripts possess alternative exon 1 structures that initiate from different promoters, one constitutively active and the other interferon-inducible. Proc Natl Acad Sci USA. 1999;96:4621–4626.[Google Scholar]
  • 137. George C X, Samuel C ECharacterization of the 5′-flanking region of the human RNA-specific adenosine deaminase ADAR1 gene and identification of an interferon-inducible ADAR1 promoter. Gene. 1999;229:203–213.[PubMed][Google Scholar]
  • 138. George C X, Thomis D C, McCormack S J, Svahn C M, Samuel C ECharacterization of the heparin-mediated activation of PKR, the interferon-induced RNA-dependent protein kinase. Virology. 1996;221:180–188.[PubMed][Google Scholar]
  • 139. Ghosh A, Sarkar S N, Guo W D, Bandyopadhyay S, Sen G CEnzymatic activity of 2′-5′-oligoadenylate synthetase is impaired by specific mutations that affect oligomerization of the protein. J Biol Chem. 1997;272:33220–33226.[PubMed][Google Scholar]
  • 140. Ghosh A, Sarkar S N, Sen G CCell growth regulatory and antiviral effects of the P69 isozyme of 2-5 (A) synthetase. Virology. 2000;266:319–328.[PubMed][Google Scholar]
  • 141. Ghosh S K, Kusari J, Bandyopadhyay S K, et al. Cloning sequencing and expression of two murine 2′-5′-oligoadenylate synthetases. Structure-function relationships. J Biol Chem. 1991;266:15293–15299.[PubMed]
  • 142. Gil J, Alcami J, Esteban MInduction of apoptosis by double-stranded RNA-dependent protein kinase PKR involves the α subunit of eukaryotic translation initiation factor 2 and NF-κB. Mol Cell Biol. 1999;19:4653–4663.[Google Scholar]
  • 143. Gil M P, Bohn E, O'Guin A K, Ramana C V, Levine B, Stark G R, Virgin H V, Schreiber R DBiologic consequences of Stat1-independent IFN signaling. Proc Natl Acad Sci USA. 2001;98:6680–6685.[Google Scholar]
  • 144. Goh K C, Haque S J, Williams B R Gp38 MAP kinase is required for STAT1 serine phosphorylation and transcriptional activation by interferons. EMBO J. 1999;18:5601–5608.[Google Scholar]
  • 145. Goulder P J, Phillips R E, Colbert R A, McAdam S, Ogg G, Nowak M A, Giangrande P, Luzzi G, Morgan B, Edwards A, McMichael A J, Rowland-Jones SLate escape from an immunodominant cytotoxic T-lymphocyte response associated with progression to AIDS. Nat Med. 1997;2:212–217.[PubMed][Google Scholar]
  • 146. Gourley T, Roys S, Lukacs N W, Kunkel S L, Flavell R A, Chang C HA novel role for the major histocompatibility complex class II transactivator CIITA in the repression of IL-4 production. Immunity. 1999;10:377–386.[PubMed][Google Scholar]
  • 147. Green S R, Mathews M BTwo RNA binding motifs in the double-stranded RNA activated protein kinase, DAI. Genes Dev. 1992;6:2478–2490.[PubMed][Google Scholar]
  • 148. Green S R, Manche L, Mathews M BTwo functionally distinct RNA binding motifs in the regulatory domain of the protein kinase, DAI. Mol Cell Biol. 1995;15:358–364.[Google Scholar]
  • 149. Grieder F B, Vogel S NRole of interferon and interferon regulatory factors in early protection against Venezuelan equine encephalitis virus infection. Virology. 1999;257:106–118.[PubMed][Google Scholar]
  • 150. Grieder F B, Davis B K, Zhou X D, Chen S J, Finkelman F C, Gause W CKinetics of cytokine expression and regulation of host protection following infection with molecularly cloned Venezuelan equine encephalitis virus. Virology. 1997;233:302–312.[PubMed][Google Scholar]
  • 151. Griffith O W, Stuehr D JNitric oxide synthases: properties and catalytic mechanism. Annu Rev Physiol. 1995;57:707–736.[PubMed][Google Scholar]
  • 152. Guidotti L G, Chisari F VCytokine-mediated control of viral infections. Virology. 2000;273:221–227.[PubMed][Google Scholar]
  • 153. Guidotti L G, Ando K, Hobbs M V, Ishikawa T, Runkel L, Schreiber R D, Chisari F WCytotoxix T lymphocyes inhibit hepatitis B virus gene expression by a noncytolytic mechanism in transgenic mice. Proc Natl Acad Sci USA. 1994;91:3764–3768.[Google Scholar]
  • 154. Guidotti L G, Borrow P, Hobbs M V, Matzke B, Gresser I, Oldstone M B A, Chisari F WViral cross talk: intracellular inactivation of the hepatitis B virus during an unrelated viral infection of the liver. Proc Natl Acad Sci USA. 1996;93:4589–4594.[Google Scholar]
  • 155. Guidotti L G, Rochford R, Chung J, Shapiro M, Purcell R, Chisari F WViral clearance without destruction of infected cells during acute HBV infection. Science. 1999;284:825–829.[PubMed][Google Scholar]
  • 156. Guo J, Sen G CCharacterization of the interaction between the interferon-induced protein P56 and the Int6 protein encoded by a locus of insertion of the mouse mammary tumor virus. J Virol. 2000;74:1892–1899.[Google Scholar]
  • 157. Guo J, Hui D J, Merrick W C, Sen G CA new pathway of translational regulation mediated by eukaryotic initiation factor 3. EMBO J. 2000;19:6891–6899.[Google Scholar]
  • 158. Guo J, Peters K L, Sen G CInduction of human protein P56 by interferon, double-stranded RNA, or virus infection. Virology. 2000;267:209–219.[PubMed][Google Scholar]
  • 159. Hahn B H, Shaw G M, Taylor M E, Redfield R R, Markham P D, Salahuddin S Z, Wong- Staal F, Gallo R C, Parks E S, Parks W PGenetic variation in HTLV-III/LAV over time in patients with AIDS or at risk for AIDS. Science. 1986;232:1548–1553.[PubMed][Google Scholar]
  • 160. Hajjar A M, Linial M LModifications of retroviral RNA by double-stranded RNA adenosine deaminase. J Virol. 1995;69:5878–5882.[Google Scholar]
  • 161. Haller O, Frese M, Kochs GMx proteins: mediators of innate resistance to RNA viruses. Rev Sci Technol Off Int Epizootol. 1998;17:220–230.[PubMed][Google Scholar]
  • 162. Hardwick J MViral interference with apoptosis. Cell Dev Biol. 1998;9:339–349.[PubMed][Google Scholar]
  • 163. Hassel B A, Zhou A, Sotomayor C, Maran A, et al A dominant negative mutant of 2-5A-dependent RNase suppresses antiproliferative and antiviral effects of interferon. EMBO J. 1993;12:3297–3304.[Google Scholar]
  • 164. Hatada E, Saito S, Fukuda RMutant influenza viruses with a defective NS1 protein cannot block the activation of PKR in infected cells. J Virol. 1999;73:2425–33.[Google Scholar]
  • 165. He B, Gross M, Roizman RThe gamma(1)34.5 protein of herpes simplex virus 1 complexes with protein phosphatase 1alpha to dephosphorylate the alpha subunit of the eukaryotic translation initiation factor 2 and preclude the shutoff of protein synthesis by double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA. 1997;94:843–848.[Google Scholar]
  • 166. Hefti HP, Frese M, Landis H, Di Paolo C, Aguzzi A, Haller O, Pavlovic JHuman MxA protein protects mice lacking a functional alpha/beta interferon system against La Crosse virus and other lethal viral infections. J Virol. 1999;73:6984–6991.[Google Scholar]
  • 167. Heim M H, Moradpour D, Blum H EExpression of hepatitis C virus proteins inhibits signal transduction through the Jak-STAT pathway. J Virol. 1999;73:8469–8475.[Google Scholar]
  • 168. Heim M HThe Jak-STAT pathway: cytokine signalling from the receptor to the nucleus. J Receptor Signal Transduction Res. 1999;19:75–120.[PubMed][Google Scholar]
  • 169. Herbert A, Lowenhaupt K, Spitzer J, Rich AChicken double-stranded RNA adenosine deaminase has apparent specificity for Z-DNA. Proc Natl Acad Sci USA. 1995;92:7550–7554.[Google Scholar]
  • 170. Hiscott J, Pitha P, Genin P, Nguyen H, Heylbroeck C, Mamane Y, Algarte M, Lin RTriggering the interferon response: the role of IRF-3 transcription factor. J Interferon Cytokine Res. 1999;19:1–13.[PubMed][Google Scholar]
  • 171. Hoofnagle J HTherapy of acute and chronic viral hepatitis. Adv Intern Med. 1994;39:241–275.[PubMed][Google Scholar]
  • 172. Horvath C MSTAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci. 2000;25:496–502.[PubMed][Google Scholar]
  • 173. Hovanessian A G, Galabru JThe double- stranded RNA-dependent protein kinase is also activated by heparin. Eur J Biochem. 1987;167:467–473.[PubMed][Google Scholar]
  • 174. Hovanessian A G, Wood J NAnticellular and antiviral effects of pppA(2′p5′A)n. Virology. 1980;101:81–90.[PubMed][Google Scholar]
  • 175. Hovanessian A G, Laurent A G, Chebath J, Galabru J, et al Identification of 69-kd and 100-kd forms of 2-5A synthetase in interferon-treated human cells by specific monoclonal antibodies. EMBO. 1987;6:1273–1280.[Google Scholar]
  • 176. Hovanessian A G, Svab J, Marie I, Robert N, et al Characterization of 69- and 100-kDa forms of 2-5A-synthetase from interferon-treated human cells. J Biol Chem. 1988;263:4945–4949.[PubMed][Google Scholar]
  • 177. Hovnanian A, Rebouillat D, Mattei M G, Levy E R, Marié I, Monaco A P, Hovanessian A GThe human 2′,5′-oligoadenylate synthetase locus is composed of three distinct genes clustered on chromosome 12q24.2 encoding the 100-, 69-, and 40-kDa forms. Genomics. 1998;52:267–277.[PubMed][Google Scholar]
  • 178. Hovnanian A, Rebouillat D, Levy E R, Mattei M G, Hovanessian A GThe human 2′,5′-oligoadenylate synthetase-like gene (OASL) encoding the interferon-induced 56-kDa protein maps to chromosome 12q24.2 in the proximity of the 2′,5′-OAS locus. Genomics. 1999;56:362–363.[PubMed][Google Scholar]
  • 179. Huang S, Hendriks W, Althage A, Hemmi S, Bluethmann H, Kamijo R, Vilcek J, Zinkernagel R M, Aguet MImmune response in mice that lack the interferon-gamma receptor. Science. 1993;259:1742–1745.[PubMed][Google Scholar]
  • 180. Hwang S Y, Hertzog P J, Holland K A, Sumarsono S H, Tymms M J, Hamilton J A, Whitty G, Bertoncello I, Kola IA null mutation in the gene encoding a type I interferon receptor component eliminates antiproliferative and antiviral responses to interferons alpha and beta and alters macrophage responses. Proc Natl Acad Sci USA. 1995;92:11284–11288.[Google Scholar]
  • 181. Icely PL, Gross P, Bergeron J J M, Devault A, Afar D E H, Bell J CTIK, a novel serine/threonine kinase, is recognized by antibodies directed against phosphotyrosine. J Biol Chem. 1991;266:16073–16077.[PubMed][Google Scholar]
  • 182. Ilson D H, Torrence P F, Vilcek JTwo molecular weight forms of human 2′5′-oligoadenylate synthetase have different activation requirements. J Interferon Res. 1986;6:5–12.[PubMed][Google Scholar]
  • 183. Isaacs A, Lindenmann J. Virus interference. I. The interferon. Proc R Soc London Ser B. 1957;147:258–267.[PubMed]
  • 184. Jacobs B L, Langland J OWhen two strands are better than one: the mediators and modulators of the cellular responses to double-stranded RNA. Virology. 1996;219:339–349.[PubMed][Google Scholar]
  • 185. Jacobsen H, Czarniecki C W, Krause D, Friedman R M, et al Interferon-induced synthesis of 2-5A-dependent Rnase in mouse JLS-V9R cells. Virology. 1983;125:496–501.[PubMed][Google Scholar]
  • 186. Jimenez-Garcia L F, Green S R, Mathews M B, Spector D LOrganization of the double-stranded RNA-activated protein kinase DAI and virus-associated VA RNA1 in adenovirus-2-infected He-La cells. J Cell Sci. 1993;106:11–22.[PubMed][Google Scholar]
  • 187. Jin H K, Takada A, Kon Y, Haller O, Watanabe TIdentification of the murine Mx2 gene: interferon-induced expression of the Mx2 protein from the feral mouse gene confers resistance to vesicular stomatitis virus. J Virol. 1999;73:4925–4930.[Google Scholar]
  • 188. John J, McKendry R, Pellegrini S, Flavell D, Kerr L M, Stark G RIsolation and characterization of a new mutant human cell line unresponsive to alpha and beta interferons. Mol Cell Biol. 1991;11:4189–4195.[Google Scholar]
  • 189. Johnson A J, Roehrig J TNew mouse model for dengue virus vaccine testing. J Virol. 1999;73:783–786.[Google Scholar]
  • 190. Karupiah G, Xie Q W, Buller R M, Nathan C, Duarte C, MacMicking J DInhibition of viral replication by interferon-gamma-induced nitric oxide synthase. Science. 1993;261:1445–1448.[PubMed][Google Scholar]
  • 191. Katze M GRegulation of the interferon-induced PKR: can viruses cope? Trends Microbiol. 1995;3:75–78.[PubMed][Google Scholar]
  • 192. Katze M G, Wambach M, Wong M L, Garfinkel M, Meurs E, Chong K, Williams B R G, Hovanessian A G, Barber G NFunctional expression and RNA binding analysis of the interferon-induced, double-stranded RNA-activated 68,000-Mr protein kinase in a cell-free system. Mol Cell Biol. 1991;11:5497–5505.[Google Scholar]
  • 193. Kawakubo K, Kuhen K L, Vessey J W, George C X, Samuel C EAlternative splice variants of the human PKR protein kinase possessing different 5′-untranslated regions: expression in untreated and interferon-treated cells and translational activity. Virology. 1999;264:106–114.[PubMed][Google Scholar]
  • 194. Kerr I MThe 2-5A system: a personal view. J Interferon Res. 1987;7:505–510.[PubMed][Google Scholar]
  • 195. Kerr I M, Brown R EpppA2′ p5′ A2′ p5′ A: an inhibitor of protein synthesis syntheized with an enzyme fraction from interferon-treated cells. Proc Natl Acad Sci USA. 1978;75:256–260.[Google Scholar]
  • 196. Kim S, Ponka PEffects of interferon-gamma and lipopolysaccharide on macrophage iron metabolism are mediated by nitric oxide-induced degradation of iron regulatory protein 2. J Biol Chem. 2000;275:6220–6226.[PubMed][Google Scholar]
  • 197. Kim U, Wang Y, Sanford T, Zeng Y, Nishikura KMolecular cloning of cDNA for double-stranded RNA adenosine deaminase, a candidate enzyme for nuclear RNA editing. Proc Natl Acad Sci USA. 1994;91:11457–11461.[Google Scholar]
  • 198. Kimura T, Kadokawa Y, Harada H, Matsumoto M, Sato M, Kashiwazaki Y, Tarutani M, Tan R S, Takasugi T, Matsuyama T, Mak T W, Noguchi S, Taniguchi TEssential and non-redundant roles of p48 (ISGF3 gamma) and IRF-1 in both type I and type II interferon responses, as revealed by gene targeting studies. Genes Cells. 1996;1:115–124.[PubMed][Google Scholar]
  • 199. Kirchhoff S, Koromilas A E, Schaper F, Grashoff M, Sonenberg N, Hauser HIRF-1 induced cell growth inhibition and interferon induction requires the activity of the protein kinase PKR. Oncogene. 1995;11:439–445.[PubMed][Google Scholar]
  • 200. Kitajewski J, Schneider R, Safer B, Munemutsu S, Samuel C E, Thimmapaya B, Shenk TAdenovirus VAI RNA antagonizes the antiviral action of interferon by preventing activation of the interferon-induced eIF-2 alpha kinase. Cell. 1986;45:195–200.[PubMed][Google Scholar]
  • 201. Knipe D M, Samuel C E, Palese P. Virus-host cell interactions. In: Knipe D M, Howley P M, Griffin D E, Martin M, Roizman B, Straus S E, editors. Fields virology. 4th ed. Philadelphia, Pa: Lippincott-Raven; 2001. pp. 133–170. [PubMed]
  • 202. Knipe D M, Howley P M, Griffin D E, Martin M, Roizman B, Straus S E, editors. Fields virology. 4th ed. Philadelphia, Pa: Lippincott-Raven; 2001. [PubMed]
  • 203. Kochs G, Haller OGTP-bound human MxA protein interacts with the nucleocapsids of Thogoto virus (Orthomyxoviridae) J Biol Chem. 1999;274:4370–4376.[PubMed][Google Scholar]
  • 204. Kochs G, Haller OInterferon-induced human MxA GTPase blocks nuclear import of Thogoto virus nucleocapsids. Proc Natl Acad Sci USA. 1999;96:2082–2086.[Google Scholar]
  • 205. Komatsu T, Takeuchi K, Yokoo J, Tanaka Y, Gotoh BSendai virus blocks alpha interferon signaling to signal transducers and activators of transcription. J Virol. 2000;74:2477–2480.[Google Scholar]
  • 206. Kon N, Suhadolnik R JIdentification of the ATP binding domain of recombinant human 40-kDa 2′,5′ -oligoadenylate synthetase by photoaffinity labeling with 8-azido-[α-P]ATP. J Biol Chem. 1996;271:19983–19990.[PubMed][Google Scholar]
  • 207. Koromilas A E, Roy S, Barber G N, Katze M G, Sonenberg NMalignant transformation by a mutant of the IFN-inducible dsRNA-dependent protein kinase. Science. 1992;257:1685–1689.[PubMed][Google Scholar]
  • 208. Kostura M, Mathews M BPurification and activation of the double-stranded RNA-dependent eIF-2 kinase DAI. Mol Cell Biol. 1989;9:1576–1586.[Google Scholar]
  • 209. Krug R M, Shaw M, Broni B, Shapiro G, Haller OInhibition of influenza viral mRNA synthesis in cells expressing the interferon-induced Mx gene product. J Virol. 1985;56:201–206.[Google Scholar]
  • 210. Kuhen K L, Samuel C EIsolation of the interferon-inducible RNA-dependent protein kinase Pkr promoter and identification of a novel DNA element within the 5′-flanking region of the human and mouse Pkr genes. Virology. 1997;227:119–130.[PubMed][Google Scholar]
  • 211. Kuhen K L, Samuel C EMechanism of interferon action: functional characterization of positive and negative regulatory domains that modulate transcriptional activation of the human RNA-dependent protein kinase Pkr promoter. Virology. 1999;254:182–195.[PubMed][Google Scholar]
  • 212. Kuhen K L, Shen X, Carlisle E R, Richardson A L, Weier H U G, Tanaka H, Samuel C EStructural organization of the human gene PKR encoding an interferon-inducible RNA-dependent protein kinase and differences from its mouse homolog. Genomics. 1996;36:197–201.[PubMed][Google Scholar]
  • 213. Kuhen K L, Shen X, Samuel C E. Mechanism of interferon action. Sequence of the human interferon-inducible RNA-dependent protein kinase (PKR) deduced from genomic clones. Gene. 1996;178:191–193.[PubMed]
  • 214. Kuhen K L, Vessey J W, Samuel C EMechanism of interferon action: identification of essential positions within the novel 15-base-pair KCS element required for transcriptional activation of the RNA-dependent protein kinase pkr gene. J Virol. 1998;72:9934–9939.[Google Scholar]
  • 215. Kumar A, Haque J, Lacoste J, Hiscott J, Williams B RDouble-stranded RNA-dependent protein kinase activates transcription factor NF-kappa B by phosphorylating I kappa B. Proc Natl Acad Sci. 1994;91:6288–6292.[Google Scholar]
  • 216. Kumar A, Yang Y-L, Flati V, Der S, Kadereit S, Deb A, Haque J, Reis L, Weissmann C, Williams B R GDeficient cytokine signaling in mouse embryo fibroblasts with a targeted deletion of the PKR gene: role of IRF1 and NF-κB. EMBO J. 1997;16:406–416.[Google Scholar]
  • 217. Kumar K P, McBride K M, Weaver B K, Dingwall C, Reich N CRegulated nuclear-cytoplasmic localization of interferon regulatory factor 3, a subunit of double-stranded RNA-activated factor 1. Mol Cell Biol. 2000;20:4159–4168.[Google Scholar]
  • 218. Kumar M, Carmichael G GNuclear antisense RNA induces extensive adenosine modifications and nuclear retention of target transcript. Proc Natl Acad Sci USA. 1997;94:3542–3547.[Google Scholar]
  • 219. Kumar S, Laneback C, Valente G, Floyd-Smith GExpansion and molecular evolution of the interferon-induced 2′-5′ oligoadenylate synthetase gene family. Mol Biol Evol. 2000;17:738–750.[PubMed][Google Scholar]
  • 220. Lai F, Chen C X, Carter K C, Nishikura KEditing of glutamate receptor B subunit ion channel RNAs by four alternatively spliced DRADA2 double-stranded RNA adenosine deaminases. Mol Cell Biol. 1997;17:2413–2424.[Google Scholar]
  • 221. Lai F, Drakas R, Nishikura KMutagenic analysis of double-stranded RNA adenosine deaminase, a candidate enzyme for RNA editing of glutamate-gated ion channel transcripts. J Biol Chem. 1995;270:17098–17105.[PubMed][Google Scholar]
  • 222. Lai M M CThe molecular biology of hepatitis delta virus. Annu Rev Biochem. 1995;64:259–286.[PubMed][Google Scholar]
  • 223. Landolfo S, Gribaudo G, Lembo DThe Ifi2000 genes: an emerging family of IFN-inducible genes. Biochimie. 1998;80:721–728.[PubMed][Google Scholar]
  • 224. Langland J O, Kao P N, Jacobs B LNuclear factor-90 of activated T-cells: a double-stranded RNA-binding protein and substrate for the double-stranded RNA-dependent protein kinase, PKR. Biochemistry. 1999;38:6361–6368.[PubMed][Google Scholar]
  • 225. Lasky S R, Jacobs B L, Samuel C EMechanism of interferon action: characterization of the sites of phosphorylation in the interferon-induced phosphoprotein P1 from mouse fibroblasts: evidence for two forms of P1. J Biol Chem. 1982;257:11087–11093.[PubMed][Google Scholar]
  • 226. Lau J F, Parisien J-P, Horvath C MInterferon regulatory factor subcellular localization is determined by a bipartite nuclear localization signal in the DNA-binding domain and interaction with cytoplasmic retention factors. Proc Natl Acad Sci USA. 2000;97:7278–7283.[Google Scholar]
  • 227. Lee C-K, Gimeno R, Levy D EDifferential regulation of constitutive major histocompatibility complex class I expression in T and B lymphocytes. J Exp Med. 1999;190:1451–1464.[Google Scholar]
  • 228. Lee S B, Esteban MThe interferon-induced double-stranded RNA-activated human p68 protein kinase inhibits the replication of vaccinia virus. Virology. 1993;193:1037–1041.[PubMed][Google Scholar]
  • 229. Lei M, Liu Y, Samuel C E. Mechanism of Interferon Action. Adenovirus VAI RNA antagonizes the RNA-editing activity of the ADAR adenosine deaminase. Virology. 1998;245:188–196.[PubMed]
  • 230. Leib D A, Machalek M A, Williams B R G, Silverman R H, Virgin H WSpecific phenotypic restoration of an attenuated virus by knockout of a host resistance gene. Proc Natl Acad Sci USA. 2000;97:6097–6101.[Google Scholar]
  • 231. Lekstrom-Himes J A, LeBlanc R A, Pesnicak L, Godleski M, Straus S EGamma interferon impedes the establishment of herpes simplex virus type 1 latent infection but has no impact on its maintenance or reactivation in mice. J Virol. 2000;74:6680–6683.[Google Scholar]
  • 232. Lengyel PTumor-suppressor genes: news about the interferon connection. Proc Natl Acad Sci USA. 1993;90:5893–5895.[Google Scholar]
  • 233. Lengyel P, Choubey D, Li S-J, Datta BThe interferon-activatable gene 200 cluster: from structure toward function. Semin Virol. 1995;6:203–213.[PubMed][Google Scholar]
  • 234. Leonard G T, Sen G CRestoration of interferon responses of adenovirus E1A-expressing HT1080 ell lines by overexpression of p48 protein. J Virol. 1997;71:5095–5101.[Google Scholar]
  • 235. Leonard W J, O'Shea J JJaks and STATs: biological implications. Annu Rev Immunol. 1998;16:293–322.[PubMed][Google Scholar]
  • 236. Levy D EPhysiological significance of STAT proteins: investigations through gene disruption in vivo. Cell Mol Life Sci. 1999;55:1559–1567.[PubMed][Google Scholar]
  • 237. Li X-L, Blackfor J A, Judge C S, Liu M, Xiao W, Kalvakolanu D V, Hassel B A. RNase-L-dependent destabilization of interferon-induced mRNAs. A role for the 2-5A system in attenuation of the interferon response. J Biol Chem. 2000;275:8880–8888.[PubMed]
  • 238. Liao J, Fu Y, Shuai KDistinct roles of the NH2- and COOH-terminal domains of the protein inhibitor of activated signal transducer and activator of transcription (STAT) 1 (PIAS1) in cytokine-induced PIAS1-Stat1 interaction. Proc Natl Acad Sci USA. 2000;97:5267–5272.[Google Scholar]
  • 239. Liu Y, Herbert A, Rich A, Samuel C EDouble-stranded RNA-specific adenosine deaminase: nucleic acid binding properties. Methods. 1998;15:199–205.[PubMed][Google Scholar]
  • 240. Liu C-J, Wang H, Lengyel PThe interferon-inducible nucleolar p204 protein binds the ribosomal RNA-specific UBF1 transcription factor and inhibits ribosomal RNA transcription. EMBO J. 1999;18:2845–2854.[Google Scholar]
  • 241. Liu Y, Samuel C EMechanism of interferon action: functionally distinct RNA-binding and catalytic domains in the interferon-inducible, double-stranded RNA-specific adenosine deaminase. J Virol. 1996;70:1961–1968.[Google Scholar]
  • 242. Liu Y, Samuel C EEditing of glutamate receptor subunit B pre-mRNA by splice-site variants of interferon-inducible double-stranded RNA-specific adenosine deaminase ADAR1. J Biol Chem. 1999;274:5070–5077.[PubMed][Google Scholar]
  • 243. Liu Y, Emeson R B, Samuel C ESerotonin-2C receptor pre-mRNA editing in rat brain and in vitro by splice site variants of the interferon-inducible double-stranded RNA-specific adenosine deaminase ADAR1. J Biol Chem. 1999;274:18351–18358.[PubMed][Google Scholar]
  • 244. Liu Y, George C X, Patterson J B, Samuel C EFunctionally distinct dsRNA binding domains associated with alternative splice variants of the IFN-inducible ADAR. J Biol Chem. 1997;272:4419–4428.[PubMed][Google Scholar]
  • 245. Liu Y, Lei M, Samuel C EChimeric dsRNA-specific adenosine deaminase ADAR1 proteins reveal functional selectivity of dsRNA-binding domains from ADAR1 and the protein kinase PKR. Proc Natl Acad Sci USA. 2000;97:12541–12546.[Google Scholar]
  • 246. Liu T, Chambers T JYellow fever virus encephalitis: properties of the brain-associated T-cell response during virus clearance in normal and gamma interferon-deficient mice and requirement for CD4 lymphocytes. J Virol. 2001;75:2107–2118.[Google Scholar]
  • 247. Lomeli H, Mosbacher J, Melcher T, Höger T, Geiger J R P, Kuner T, Monyer H, Higuchi M, Bach A, Seeburg P HControl of kinetic properties of AMPA receptor channels by nuclear RNA editing. Science. 1994;226:1709–1713.[PubMed][Google Scholar]
  • 248. Lu B, Epensperger C, Dembic Z, Wang Y L, Kvatyuk M, Lu T H, Coffman R L, Pestka S, Rothman R BTargeted disruption of the interferon gamma receptor 2 gene results in severe immune defects in mice. Proc Natl Acad Sci USA. 1998;95:8233–8238.[Google Scholar]
  • 249. Lu M, Wiese M, Roggendorf MSelection of genetic variants of the 5′ noncoding region of hepatitis C virus occurs only in patients responding to interferon alpha therapy. J Med Virol. 1999;59:146–153.[PubMed][Google Scholar]
  • 250. Lu Y, Wambach M, Katze M G, Krug R MBinding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the eIF-2 translation initiation factor. Virology. 1995;214:222–228.[PubMed][Google Scholar]
  • 251. Lukaszewski R A, Brooks T J GPegylated alpha interferon is an effective treatment for virulent venezuelan equine encephalitis virus and has profound effects on the host immune response to infection. J Virol. 2000;74:5006–5015.[Google Scholar]
  • 252. Maas S, Melcher T, Herb A, Seeburg P H, Keller W, Krause S, Higuchi M, O'Connell M AStructural requirements for RNA editing in glutamate receptor pre-mRNAs by recombinant double-stranded RNA adenosine deaminase. J Biol Chem. 1996;271:12221–12226.[PubMed][Google Scholar]
  • 253. Maas S, Rich AChanging genetic information through RNA editing. Bioessays. 2000;22:790–802.[PubMed][Google Scholar]
  • 254. MacMicking J D, North R J, LaCourse R, Mudgett J S, Shah S K, Nathan C FIdentification of nitric oxide synthase as a protective locus against tuberculosis. Proc Natl Acad Sci USA. 1997;94:5243–5248.[Google Scholar]
  • 255. MacMicking J D, Xie Q-W, Nathan CNitric oxide and macrophage function. Annu Rev Immunol. 1997;15:323–350.[PubMed][Google Scholar]
  • 256. Maitra R K, McMillan N A J, Desai S, McSwiggen J, et al HIV-1 TAR RNA has an intrinsic ability to activate interferon-inducible enzymes. Virology. 1994;204:823–827.[PubMed][Google Scholar]
  • 257. Major A S, Cuff C FEffects of the route of infection on immunoglobulin G subclasses and specificity of the reovirus-specific humoral immune response. J Virol. 1996;70:5968–5974.[Google Scholar]
  • 258. Manchie L, Green S R, Schmedt C, Mathews M BInteractions between double-stranded RNA regulators and the protein kinase DAI. Mol Cell Biol. 1992;12:5238–5248.[Google Scholar]
  • 259. Marie I, Hovanessian A GThe 69-kDa 2-5A synthetase is composed of two homologous and adjacent functional domains. J Biol Chem. 1992;267:9933–9939.[PubMed][Google Scholar]
  • 260. Marie I, Durbin J E, Levy D EDifferential viral induction of distinct interferon-alpha genes by positive feedback through interferon regulatory factor-7. EMBO J. 1998;17:6660–6669.[Google Scholar]
  • 261. Marie I, Rebouillat D, Hovanessian A GThe expression of both domains of the 69/71 kDa 2′,5′ oligoadenylate synthetase generates a catalytically active enzyme and mediates an anti-viral response. Eur J Biochem. 1999;262:155–165.[PubMed][Google Scholar]
  • 262. Marie I, Svab J, Robert N, Galabru J, Hovanessian A GDifferential expression and distinct structure of 69- and 100-kDa forms of 2-5A synthetase in human cells treated with interferon. J Biol Chem. 1990;265:18601–18607.[PubMed][Google Scholar]
  • 263. Marschall M, Zach A, Hechtfischer A, Foerst G, Meier-Ewert H, Haller OInhibition of influenza C viruses by human MxA protein. Virus Res. 2000;67:179–188.[PubMed][Google Scholar]
  • 264. Mason D, Powrie FControl of immune pathology by regulatory T cells. Curr Opin Immunol. 1998;10:649–655.[PubMed][Google Scholar]
  • 265. Masters B S, McMillan K, Sheta E A, Nishimura J S, Roman L J, Martasek PNeuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: structure studies of a cysteine thiolate-liganded heme protein that hydroxylates L-arginine to produce NO as a cellular signal. FASEB J. 1996;10:552–558.[PubMed][Google Scholar]
  • 266. Masters P S, Samuel C E. Mechanism of interferon action: inhibition of vesicular stomatitis virus replication in human amnion U cells by cloned human eukocyte interferon. II. Effect on viral macromolecular synthesis. J Biol Chem. 1983;258:12026–12033.[PubMed]
  • 267. Mathews M BViral evasion of cellular defense mechanisms: regulation of the protein kinase DA by RNA effectors. Semin Virol. 1993;4:247–257.[PubMed][Google Scholar]
  • 268. Mathews M B, Shenk TAdenovirus virus-associated RNA and translational control. J Virol. 1991;65:5657–5662.[Google Scholar]
  • 269. Matsuyama T, Kimura T, Kitagawa M, Pfeffer K, Kawakami T, Watanabe N, Kündig T M, Amakawa R, Kishihara K, Wakeham A, et al Targeted disruption of IRF-1 or IRF-2 results in abnormal type I IFN gene induction and aberrant lymphocyte development. Cell. 1993;75:83–97.[PubMed][Google Scholar]
  • 270. McClary H, Koch R, Chisari F V, Guidotti L GInhibition of hepatitis B virus replication during schistosoma mansoni infection in transgenic mice. J Exp Med. 2000;192:289–294.[Google Scholar]
  • 271. McCormack S J, Samuel C E. Mechanism of interferon action. RNA-binding activity of full-length and R-domain forms of the RNA-dependent protein kinase (PKR): determination of the KD values for VAI and TAR RNAs. Virology. 1995;188:47–56.[PubMed]
  • 272. McCormack S J, Ortega L G, Doohan J R, Samuel C E. Mechanism of interferon action. Motif I of the interferon-induced, RNA-dependent protein kinase (PKR) is sufficient to mediate RNA binding activity. Virology. 1994;198:92–99.[PubMed]
  • 273. McCormack SJ, Thomis D C, Samuel C E. Mechanism of interferon action. Identification of an RNA-binding domain within the N-terminal region of the human RNA-dependent P1/eIF-2α protein kinase. Virology. 1992;188:47–56.[PubMed]
  • 274. McHutchison J G, Gordon S C, Schiff E R, Shiffman M L, Lee W M, Rustgi V K, Goodman Z D, Ling M H, Cort S, Albrecht J K. Interferon alfa-2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. Hepatitis Interventional Therapy Group. N Engl J Med. 1998;339:1485–1492.[PubMed]
  • 275. McMichael A J, Phillips R EEscape of human immunodeficiency virus from immune control. Annu Rev Immunol. 1997;15:271–296.[PubMed][Google Scholar]
  • 276. McMillan N A J, Chun R F, Siderovski D P, Galabru J, Toone W, Samuel C E, Mak T, Hovanessian A, Jeang K, Williams B R GHIV-1 Tat directly interacts with the interferon-induced, double-stranded-RNA-dependent kinase, PKR. Virology. 1995;213:413–424.[PubMed][Google Scholar]
  • 277. McMillan N A J, Carpick B W, Hollis B, Toone M, Zamanian M, Williams B R GMutational analysis of the double-stranded RNA binding domain of the dsRNA-activated protein kinase, PKR. J Biol Chem. 1995;270:2601–2606.[PubMed][Google Scholar]
  • 278. Meinke A, Barahmandpour F, Wohrl S, Stoiber D, Decker TActivation of different Stat5 isoforms contributes to cell-type-restricted signaling in response to interferons. Mol Cell Biol. 1996;16:6937–6944.[Google Scholar]
  • 279. Melcher T, Maas S, Herb A, Sprengel R, Seeburg P H, Higuchi MA mammalian RNA editing enzyme. Nature. 1996;379:460–464.[PubMed][Google Scholar]
  • 280. Mellor H, Flowers K M, Kimball S R, Jefferson L SCloning and characterization of a cDNA encoding rat PKR, the double-stranded RNA-dependent eukaryotic initiation factor-2 kinase. Biochim Biophys Acta. 1994;1219:693–696.[PubMed][Google Scholar]
  • 281. Melville M W, Tan S L, Wambach M, et al The cellular inhibitor of the PKR protein kinase, P58(IPK), is an influenza virus-activated co-chaperone that modulates heat shockprotein 70 activity. J Biol Chem. 1999;274:3797–3803.[PubMed][Google Scholar]
  • 282. Meraz M A, White J M, Sheehan K C, Bach E A, Rodig S J, Dighe A S, Kaplan D H, Riley J K, Greenlund A C, Campbell D, Carver-Moore K, DuBois R N, Clark R, Aguet M, Schreiber R DTargeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell. 1996;84:431–442.[PubMed][Google Scholar]
  • 283. Meurs E, Chang K, Galabru J, Thomas N S, Kerr I M, Williams B R G, Hovanessian A GMolecular cloning and characterization of the human double-stranded RNA-activated protein kinase induced by interferon. Cell. 1990;62:379–390.[PubMed][Google Scholar]
  • 284. Meurs E F, Galabru J, Barker G N, Katze M G, Hovanessian A GTumor suppressor function of the interferon-induced double-stranded RNA-activated protein kinase. Proc Natl Acad Sci USA. 1993;90:232–236.[Google Scholar]
  • 285. Meurs E F, Wantanabe Y, Kadereit S, Barber G N, Katze M G, Chong K, Williams B R G, Hovanessian A GConstitutive expression of human double-stranded RNA-activated p68 kinase in murine cells mediates phosphorylation of eukaryotic initiation factor 2 and partial resistance to encephalomyocarditis virus growth. J Virol. 1992;66:5805–5814.[Google Scholar]
  • 286. Michel T, Feron ONitric oxide synthases: which, where, how, and why? J Clin Investig. 1997;100:2146–21552.[Google Scholar]
  • 287. Miller D M, Rahill B M, Boss J M, Lairmore M D, Durbin J E, Waldman J W, Sedmak D DHuman cytomegalovirus inhibits major histocompatibility complex class II expression by disruption of the Jak/Stat pathway. J Exp Med. 1998;187:675–683.[Google Scholar]
  • 288. Miller L KBaculovirus interaction with host apoptotic pathways. J Cell Physiol. 1997;173:178–18.[PubMed][Google Scholar]
  • 289. Min W, Ghosh S, Lengyel PThe interferon-inducible p202 protein as a modulator of transcription: inhibition of NF-kappa B, c-Fos, and c-Jun activities. Mol Cell Biol. 1996;16:359–368.[Google Scholar]
  • 290. Mittaz L, Scott H, Rossier C, Seeburg P, Higuchi M, Antonarakis SCloning of a human RNA editing deaminase (ADARB1) of glutamate receptors that maps to chromosome 21q22.3. Genomics. 1997;41:210–217.[PubMed][Google Scholar]
  • 291. Mogensen K E, Lewerenz M, Reboul J, Lutfalla G, Uzé GThe type I interferon receptor: structure, function, and evolution of a family business. J Interferon Cytokine Res. 1999;19:1069–1098.[PubMed][Google Scholar]
  • 292. Monath T PDengue: the risk to developed and developing countries. Proc Natl Acad Sci USA. 1994;91:2395–2400.[Google Scholar]
  • 293. Muhlethaler-Mottet A, Otten L A, Steimle V, Mach BExpression of MHC class II molecules in different cellular and functional compartments is controlled by differential usage of multiple promoters of the transactivator CIITA. EMBO J. 1997;16:2851–2860.[Google Scholar]
  • 294. Muller U, Steinhoff U, Reis L F, Hemmi S, Pavlovic J, Zinkernagel R M, Aguet MFunctional role of type I and type II interferons in antiviral defense. Science. 1994;264:1918–1921.[PubMed][Google Scholar]
  • 295. Munemitsu S M, Samuel C E. Biosynthesis of reovirus-specified polypeptides. Multiplication rate but not yield of reovirus serotypes 1 and 3 correlates with the level of virus-mediated inhibition of cellular protein synthesis. Virology. 1984;136:133–143.[PubMed]
  • 296. Murphy D G, Dimock K, Kang C YNumerous transitions in human parainfluenza virus 3 RNA recovered from persistently infected cells. Virology. 1991;181:760–763.[PubMed][Google Scholar]
  • 297. Muto N F, Martinand-Mari C, Adelson M E, Suhadolnik R JInhibition of replication of reactivated human immunodeficiency virus type 1 (HIV-1) in latently infected U1 cells transduced with an HIV-1 long terminal repeat-driven PKR cDNA construct. J Virol. 1999;73:9021–9028.[Google Scholar]
  • 298. Nagano Y, Kojima YInhibition de I'infection vaccinale par le virus homologue. C R Seances Soc Biol Fil. 1958;152:1627–1630.[PubMed][Google Scholar]
  • 299. Naka T, Fujimoto M, Kishimoto TNegative regulation of cytokine signaling: STAT-induced STAT inhibitor. Trends Biochem Sci. 1999;24:394–398.[PubMed][Google Scholar]
  • 300. Nakajima K, Desselberger U, Palese PRecent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature. 1978;247:334–339.[PubMed][Google Scholar]
  • 301. Nakao K, Yamashita M, Tamada Y, Hamasaki K, Ishikawa H, Kato Y, Eguchi K, Ishii Np48 (ISGF-3γ) is involved in interferon-α-induced suppression of hepatitis B virus enhancer-1 activity. J Biol Chem. 1999;274:28075–28078.[PubMed][Google Scholar]
  • 302. Nathan CInducible nitric oxide synthase: what difference does it make? J Clin Investig. 1997;100:2417–2423.[Google Scholar]
  • 303. Nguyen H, Hiscott J, Pitha P MThe growing family of interferon regulatory factors. Cytokine Growth Factor Rev. 1997;8:293–312.[PubMed][Google Scholar]
  • 304. Nguyen K B, Cousens L P, Doughty L A, Pien G C, Durbin J E, Biron C AInterferon α/β-mediated inhibition and promotion of interferon γ: STAT1 resolves a paradox Nat. Immunol. 2000;1:70–76.[PubMed][Google Scholar]
  • 305. O'Connell M A, Keller WPurification and properties of double-stranded RNA-specific adenosine deaminase from calf thymus. Proc Natl Acad Sci USA. 1994;91:10596–10600.[Google Scholar]
  • 306. O'Connell M A, Krause S, Higuchi M, Hsuan J J, Totty N F, Jenny A, Keller WCloning of cDNAs encoding mammalian double-stranded RNA-specific adenosine deaminase. Mol Cell Biol. 1995;15:1389–1397.[Google Scholar]
  • 307. Offermann M K, Zimring J, Mellits K H, Mathews M BActivation of the double-stranded-RNA-activated protein kinase and induction of vascular cell adhesion molecule-1 by poly(I).poly(C) in endothelial cells. Eur J Biochem. 1995;232:28–36.[PubMed][Google Scholar]
  • 308. O'Hara P J, Nichol S T, Horodyski F M, Holland J JVesicular stomatitis virus defective interfering particles can contain extensive genome sequence rearrangements and base substitutions. Cell. 1984;36:915–924.[PubMed][Google Scholar]
  • 309. Oldstone M B AHow viruses escape from cytotoxic lymphocyes: molecular parameters and players. Virology. 1997;234:179–185.[PubMed][Google Scholar]
  • 310. Ouchi T, Lee S W, Ouchi M, Aaronson S A, Horvath C MCollaboration of signal transducer and activator of transcription 1 (STAT1) and BRCA1 in differential regulation of IFN-gamma target genes. Proc Natl Acad Sci. 2000;97:5208–5213.[Google Scholar]
  • 311. Parganas E, Wang D, Stravopodis D, Topham D J, Marine J C, Teglund S, Vanin E F, Bodner S, Colamonici O R, vanDeursen J M, Grosveld G, Ihle J NJak2 is essential for signaling through a variety of cytokine receptors. Cell. 1998;93:385–395.[PubMed][Google Scholar]
  • 312. Patel R C, Sen G CIdentification of the double-stranded RNA-binding domain of the human interferon-inducible protein kinase. J Biol Chem. 1992;267:7671–7676.[PubMed][Google Scholar]
  • 313. Patel R C, Sen G CPACT, a protein activator of the interferon-induced protein kinase. PKR EMBO J. 1998;17:4379–4390.[Google Scholar]
  • 314. Patel R C, Stanton P, Sen G CRole of the amino-terminal residues of the interferon-induced protein kinase in its activation by dsRNA and heparin. J Biol Chem. 1994;269:18593–18598.[PubMed][Google Scholar]
  • 315. Patel R C, Vestal D J, Xu Z, Bandyopadhyay S, Guo W, Erme S M, Williams B R, Sen G CDRBP76, a double-stranded RNA-binding nuclear protein, is phosphorylated by the interferon-induced protein kinase, PKR. J Biol Chem. 1999;274:20432–20437.[PubMed][Google Scholar]
  • 316. Pathak V K, Schindler D, Hershey J W BGeneration of a mutant form of protein synthesis initiation factor eIF-2 lacking the site of phosphorylation of eIF-2 kinases. Mol Cell Biol. 1988;8:993–995.[Google Scholar]
  • 317. Patterson J B, Samuel C EExpression and regulation by interferon of a double-stranded RNA-specific adenosine deaminase from human cells: evidence for two forms of the deaminase. Mol Cell Biol. 1995;15:5376–5388.[Google Scholar]
  • 318. Patterson J B, Thomis D C, Hans S L, Samuel C EMechanism of interferon action: double-stranded RNA-specific adenosine deaminase from human cells is inducible by alpha and gamma interferons. Virology. 1995;210:508–511.[PubMed][Google Scholar]
  • 319. Pavlovic J, Arzet H A, Hefti H P, Frese M, Rost D, Ernst B, Kolb E, Staeheli P, Haller OEnhanced virus resistance of transgenic mice expressing the human MxA protein. J Virol. 1995;69:4506–4510.[Google Scholar]
  • 320. Pavlovic J, Haller O, Staeheli PHuman and mouse Mx proteins inhibit different steps of the influenza virus multiplication cycle. J Virol. 1992;66:2564–2569.[Google Scholar]
  • 321. Pawlotsky J M, Germanidis G, Frainais P O, et al Evolution of the hepatitis C virus second envelope protein hypervariable region in chronically infected patients receiving alpha interferon therapy. J Virol. 1999;73:6490–6499.[Google Scholar]
  • 322. Pawlotsky J M, Germanidis G, Neumann A U, et al Interferon resistance of hepatitis C virus genotype 1b: relationship to nonstructural 5A gene quasispecies mutations. J Virol. 1998;72:2795–2805.[Google Scholar]
  • 323. Pestka S, Langer J A, Zoon K C, Samuel C EInterferons and their actions. Annu Rev Biochem. 1987;56:317–332.[PubMed][Google Scholar]
  • 324. Pfeffer L M, Mullersman J E, Pfeffer S R, Murti A, Shi W, Yang C HSTAT3 as an adapter to couple phosphatidylinositol 3-kinase to the IFNAR1 chain of the type I interferon receptor. Science. 1997;276:1418–1420.[PubMed][Google Scholar]
  • 325. Pieper A A, Blackshaw S, Clements E E, Brat D J, Krug D K, White A J, Pinto-Garcia P, Favit A, Conover J R, Snyder S H, Verma APoly(ADP-ribosyl)ation basally activated by DNA strand breaks reflects glutamate-nitric oxide neurotransmission. Proc Natl Acad Sci USA. 2000;97:1845–1850.[Google Scholar]
  • 326. Piskurich J F, Wang Y, Linhoff M W, White L C, Ting J PIdentification of distinct regions of 5′ flanking DNA that mediate constitutive, IFN-gamma, STAT1, and TGF-beta-regulated expression of the class II transactivator gene. J Immunol. 1998;160:233–240.[PubMed][Google Scholar]
  • 327. Player M R, Torrence P FThe 2-5A system: modulation of viral and cellular processes through acceleration of RNA degradation. Pharmacol Ther. 1998;78:55–113.[PubMed][Google Scholar]
  • 328. Polson A G, Bass B L, Casey J LRNA editing of HDV antigenome by dsRNA-adenosine deaminase. Nature. 1996;380:454–456.[PubMed][Google Scholar]
  • 329. Polyak S J, Paschal D M, McArdle S, Gale M J, Jr, Moradpour D, Gretch D RCharacterization of the effects of hepatitis C virus nonstructural 5A protein expression in human cell lines and on interferon-sensitive virus replication. Hepatology. 1999;29:1262–1271.[PubMed][Google Scholar]
  • 330. Ponten A, Sick C, Weeber M, Haller O, Kochs GDominant-negative mutants of human MxA protein: domains in the carboxy-terminal moiety are important for oligomerization and antiviral activity. J Virol. 1997;71:2591–2599.[Google Scholar]
  • 331. Poppers J, Mulvey M, Khoo D, Mohr IInhibition of PKR activation by a proline-reich RNA binding domain of the herpes simplex virus type 1 Us11 protein. J Virol. 2000;74:11215–11221.[Google Scholar]
  • 332. Prejean C, Colamonici O RRole of the cytoplasmic domains of the type I interferon receptor subunits in signaling. Semin Cancer Biol. 2000;10:83–92.[PubMed][Google Scholar]
  • 333. Proud C GPKR: a new name and new roles. Trends Biochem Sci. 1995;20:241–246.[PubMed][Google Scholar]
  • 334. Ptossi F, Blank A, Schröder A, Schwarz A, Hüssi P, Schwemmle M, Pavlovic J, Staeheli PA functional GTP-binding motif is necessary for antiviral activity of Mx proteins. J Virol. 1993;67:6726–6732.[Google Scholar]
  • 335. Rajan P, Swaminathan S, Zhu J, Cole C N, et al A novel translational regulation function for the simian virus 40 large-T antigen gene. J Virol. 1995;69:785–795.[Google Scholar]
  • 336. Ramana C V, Gil M P, Han Y, Ransohoff R M, Schreiber R D, Stark G RStat1-independent regulation of gene expression in response to IFN-γ Proc Natl Acad Sci USA. 2001;98:6674–6679.[Google Scholar]
  • 337. Rani M R S, Foster G R, Leung S, Leaman D, Stark G R, Ransohoff R MCharacterization of β-R1, a gene ihat is selectively induced by interferon beta (IFN-β) compared with IFN-α J Biol Chem. 1996;271:22878–22884.[PubMed][Google Scholar]
  • 338. Raz R, Durbin J E, Levy D EAcute phase response factor and additional members of the interferon-stimulated gene factor 3 family integrate diverse signals from cytokines, interferons, and growth factors. J Biol Chem. 1994;269:24391–24395.[PubMed][Google Scholar]
  • 339. Rebagliati M R, Melton D AAntisense RNA injections in fertilized frog eggs reveal an RNA duplex unwinding activity. Cell. 1987;48:599–605.[PubMed][Google Scholar]
  • 340. Rebouillat D, Hovanessian A GThe human 2′,5′-oligoadenylate synthetase family: interferon-induced proteins with unique enzymatic properties. J Interferon Res. 1999;19:295–308.[PubMed][Google Scholar]
  • 341. Rebouillat D, Hovnanian A, David G, Hovanessian A G, Williams B R GCharacterization of the gene encoding the 100-kDa form of human 2′,5′ oligoadenylate synthetase. Genomics. 2000;70:232–240.[PubMed][Google Scholar]
  • 342. Rebouillat D, Hovnanian A, Marie I, Hovanessian A GThe 100-kDa 2′,5′-oligoadenylate synthetase catalyzing preferentially the synthesis of dimeric pppA2′p5′A molecules is composed of three homologous domains. J Biol Chem. 1999;274:1557–1565.[PubMed][Google Scholar]
  • 343. Reis L F L, Harada H, Wolchok J D, Taniguchi T, Vilcek JCritical role of a common transcription factor, IRF-1, in the regulation of IFN-beta and IFN-inducible genes. EMBO J. 1992;11:185–193.[Google Scholar]
  • 344. Richter M F, Schwemmle M, Herrmann C, Wittinghofer A, Staeheli P. Interferon-induced MxA protein. GTP binding and GTP hydrolysis properties. J Biol Chem. 1995;270:13512–13517.[PubMed]
  • 345. Rivas C, Gil J, Melková Z, et al Vaccinia virus E3L protein is an inhibitor of the interferon (IFN)-induced 2-5A synthetase enzyme. Virology. 1998;243:406–414.[PubMed][Google Scholar]
  • 346. Roberts R M, Liu L, Guo Q, Leaman D, Bixby JThe evolution of the type I interferons. J Interferon Res. 1998;18:805–816.[PubMed][Google Scholar]
  • 347. Rodig S J, Meraz M A, White J M, Lampe P A, Riley J K, Arthur C D, King K L, Sheehan K C F, Pennica D, Johnson E M, Schreiber R DDisruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell. 1998;93:373–383.[PubMed][Google Scholar]
  • 348. Romano P R, Green S R, Barker G N, Mathews M B, Hinnebusch A GStructural requirements for double-stranded RNA binding, dimerization, and activation of the human eIF-2α kinase DAI in Saccharomyces cerevisiae. Mol Cell Biol. 1995;15:365–368.[Google Scholar]
  • 349. Ronco L V, Karpova A Y, Vidal M, Howley P MHuman papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor 3 and inhibits its transcriptional activity. Genes Dev. 1998;12:2061–2072.[Google Scholar]
  • 350. Rueter S M, Emeson R B. Adenosine to inosine conversion in mRNA. In: Grosjean H, Benne R, editors. Modification and editing of RNA. Washington, D.C.: ASM Press; 1998. pp. 343–361. [PubMed]
  • 351. Ryman K D, Klimstra W B, Nguyen K B, Biron C A, Johnston R EAlpha/beta interferon protects adult mice from fatal Sindbis virus infection and is an important determinant of cell and tissue tropism. J Virol. 2000;74:3366–3378.[Google Scholar]
  • 352. Rysiecki G, Gewert D R, Williams B R GConstitutive expression of a 2′,5′-oligoadenylate synthetase cDNA results in increased antiviral activity and growth suppression. J Interferon Res. 1989;9:649–657.[PubMed][Google Scholar]
  • 353. Salehzada T, Silhol M, Steff A M, Lebleu B, et al 2′,5′-Oligoadenylate-dependent Rnase L is a dimer of regulatory and catalytic subunits. J Biol Chem. 1993;268:7733–7740.[PubMed][Google Scholar]
  • 354. Samuel C E. Mechanism of interferon action. Phosphorylation of protein synthesis initiation factor eIF-2 in interferon-treated human cells by a ribosome-associated protein kinase possessing site-specificity similar to hemin-regulated rabbit reticulocyte kinase. Proc Natl Acad Sci USA. 1979;76:600–604.
  • 355. Samuel C EMechanisms of the Antiviral Actions of IFN. Prog Nucleic Acid Res Mol Biol. 1988;35:27–72.[PubMed][Google Scholar]
  • 356. Samuel C ERole of the RNA-dependent protein kinase in the regulated expression of genes in transfected cells. Pharmacol Ther. 1992;54:307–317.[PubMed][Google Scholar]
  • 357. Samuel C E. Antiviral actions of interferon. Interferon-regulated cellular proteins and their surprisingly selective antiviral activities. Virology. 1991;183:1–11.[PubMed]
  • 358. Samuel C EThe eIF-2α protein kinases, regulators of translation in eukaryotes from yeasts to humans. J Biol Chem. 1993;268:7603–7606.[PubMed][Google Scholar]
  • 359. Samuel C EProtein-nucleic acid interactions and cellular responses to interferon. Methods J. 1998;15:161–165.[PubMed][Google Scholar]
  • 360. Samuel C EReoviruses and the interferon system. Curr Top Microbiol Immunol. 1998;233:125–145.[PubMed][Google Scholar]
  • 361. Samuel C E, Duncan R, Knutson G S, Hershey J W. Mechanism of interferon action. Increased phosphorylation of protein synthesis initiation factor eIF-2 alpha in interferon-treated, reovirus-infected mouse L929 fibroblasts in vitro and in vivo. J Biol Chem. 1984;259:13451–13457.[PubMed]
  • 362. Samuel C E, Kuhen K L, George C X, Ortega L G, Rende-Fournier R, Tanaka HThe PKR protein kinase—an interferon-inducible regulator of cell growth and differentiation. Int J Hematol. 1997;65:227–237.[PubMed][Google Scholar]
  • 363. Sarkar S N, Sen G CProduction, purification, and characterization of recombinant 2′,5′-oligoadenylate synthetases. Methods. 1998;15:233–242.[PubMed][Google Scholar]
  • 364. Sarkar S N, Ghosh A, Wang H-W, Sung S-S, Sen G CThe nature of the catalytic domain of 2′-5′-oligoadenylate synthetases. J Biol Chem. 1999;274:25535–25542.[PubMed][Google Scholar]
  • 365. Saunders M E, Gewert D R, Tugwell M E, McMahon M, et al Human 2-5A synthetase: characterization of a novel cDNA and corresponding gene structure. EMBO J. 1985;4:1761–1768.[Google Scholar]
  • 366. Scadden A D J, Smith C W JA ribonuclease specific for inosine-containing RNA: a potential role in antiviral defense. EMBO J. 1997;16:2140–2149.[Google Scholar]
  • 367. Schafer S L, Lin R, Moore P A, Hiscott J, Pitha P MRegulation of type I interferon gene expression by interferon regulatory factor-3. J Biol Chem. 1998;273:2714–2720.[PubMed][Google Scholar]
  • 368. Schindler CCytokines and JAK-STAT signaling. Exp Cell Res. 1999;253:7–14.[PubMed][Google Scholar]
  • 369. Schindler C, Darnell J E., Jr Transcriptional responses to polypeptide ligands: the JAK-STAT pathway. Annu Rev Biochem. 1995;64:621–651.[PubMed]
  • 370. Schmechel S, Chute M, Skinner P, et al Preferential translation of reovirus mRNA by a s3-dependent mechanism. Virology. 1997;232:62–73.[PubMed][Google Scholar]
  • 371. Schmedt C, Green S R, Manchi L, Taylor D R, Ma Y, Mathews M B. Mechanism of interferon action. RNA-binding activity of full-length and R-domain forms of the RNA-dependent protein kinase (PKR): determination of the KD values for VAI and TAR RNAs. J Mol Biol. 1995;249:29–44.[PubMed]
  • 372. Schneider R J, Shenk TImpact of virus infection on host cell protein synthesis. Annu Rev Biochem. 1987;56:317–332.[PubMed][Google Scholar]
  • 373. Schwart T, Lowenhaupt K, Kim Y G, Li L Y, Brown B A, Herbert A, Rich AProtein dissection of Zab, the Z-DNA-binding domain of human ADAR1. J Biol Chem. 1999;274:2899–2906.[PubMed][Google Scholar]
  • 374. Schwers A, Vanden B C, Mainhoudt M, Beduin J M, Werenne J, Pastoret P PExperimental rotavirus diarrhoea in colostrum-deprived newborn calves: assay of treatment by administration of bacterially producted human interferon (Hu-IFN alpha 2) Ann Rech Vet. 1985;16:213–218.[PubMed][Google Scholar]
  • 375. Seeburg P H, Higuchi M, Sprengel RRNA editing of brain glutamate receptor channels: mechanism and physiology. Brain Res Rev. 1998;26:217–229.[PubMed][Google Scholar]
  • 376. Sen G C, Lengyel PThe interferon system: a bird's eye view of its biochemistry. J Biol Chem. 1992;267:5017–5020.[PubMed][Google Scholar]
  • 377. Servant M J, ten Oever B, LePage C, Conti L, Gessani S, Julkunen I, Lin R, Hiscott JIdentification of distinct signaling pathways leading to the phosphorylation of interferon regulatory factor 3. J Biol Chem. 2000;276:355–363.[PubMed][Google Scholar]
  • 378. Sharmeen L, Bass B, Sonenberg N, Weintraub H, Groudine MTat-dependent adenosine-to-inosine modification of wild-type transactivation response RNA. Proc Natl Acad Sci USA. 1991;88:8096–8100.[Google Scholar]
  • 379. Sharp T V, Moonan F, Romashko A, et al The vaccinia virus E3L gene product interacts with both the regulatory and the substrate binding regions of PKR: implications for PKR autoregulation. Virology. 1998;25:302–315.[PubMed][Google Scholar]
  • 380. Sharpe A H, Fields B N. Pathogenesis of reovirus infection. In: Joklik W K, editor. The Reoviridae. New York, N.Y: Plenum Press; 1983. pp. 229–285. [PubMed]
  • 381. Shen Y, Shenk T EViruses and apoptosis. Curr Opin Genet Dev. 1995;5:105–111.[PubMed][Google Scholar]
  • 382. Sherry B, Baty C J, Blum M AReovirus-induced acute myocarditis in mice correlates with viral RNA synthesis rather than generation of infectious virus in cardiac myocytes. J Virol. 1996;70:6709–6715.[Google Scholar]
  • 383. Shiloh M U, MacMicking J D, Nicholson S, Brause J E, Potter S, Marino M, Fang F, Dinauer M, Nathan CPhenotype of mice and macrophages deficient in both phagocyte oxidase and inducible nitric oxide synthase. Immunity. 1999;10:29–38.[PubMed][Google Scholar]
  • 384. Shors S T, Beattie E, Paoletti E, et al Role of the vaccinia virus E3L and K3L gene products in rescue of VSV and EMCV from the effects of IFN-α J Interferon Cytokine Res. 1998;18:721–729.[PubMed][Google Scholar]
  • 385. Shors T, Kibler K V, Perkins K B, et al Complementation of vaccinia virus deleted of the E3L gene by mutants of E3L. Virology. 1997;239:269–276.[PubMed][Google Scholar]
  • 386. Shtrichman R, Samuel C ERole of gamma interferon in antimicrobial immunity. Curr Opin Microbiol. 2001;4:251–259.[PubMed][Google Scholar]
  • 387. Shuai KThe STAT family of proteins in cytokine signaling. Prog Biophys Mol Biol. 1999;71:405–422.[PubMed][Google Scholar]
  • 388. Siegal F P, Kadowaki N, Shodell M, Fitzgerald-Bocarsly P A, Shah K, Ho S, Antonenko S, Liu Y JThe nature of the principal type 1 interferon-producing cells in human blood. Science. 1999;284:1835–1837.[PubMed][Google Scholar]
  • 389. Simon A, Fäh J, Haller O, Staeheli PInterferon-regulated Mx genes are not responsive to interleukin-1, tumor necrosis factor, and other cytokines. J Virol. 1991;65:968–971.[Google Scholar]
  • 390. Simon J H, Lull J, Jacobs L D, Rudick R A, Cookfair D L, Herndon R M, Richert J R, Salazar A M, Sheeder J, Miller D, McCabe K, Serra A, Campion M K, Fischer J D, Goodkin D E, Simonian N, Lajaunie M, Wende K, Martens-Davidson A, Kinkel R P, Munschauer F E., III A longitudinal study of T1 hypointense lesions in relapsing MS: MSCRG trial of interferon beta-1aMultiple Sclerosis Collaborative Research Group. Neurology. 2000;55:185–192.[PubMed][Google Scholar]
  • 391. Simpson L, Emeson R BRNA editing. Annu Rev Neurosci. 1996;19:27–52.[PubMed][Google Scholar]
  • 392. Smith G L, Symons J A, Alcami APoxviruses: interfering with interferon. Semin Virol. 1998;8:409–418.[PubMed][Google Scholar]
  • 393. Sommer B, Köhler M, Sprengel R, Seeburg P HRNA editing in brain controls a determinant of ion flow in glutamate-gated channels. Cell. 1991;67:11–19.[PubMed][Google Scholar]
  • 394. Sonenberg NMeasures and countermeasures in the modulation of initiation factor activities by viruses. New Biol. 1990;2:402–409.[PubMed][Google Scholar]
  • 395. Song M M, Shuai KThe suppressor of cytokine signaling (SOCS) 1 and SOCS3 but not SOCS2 proteins inhibit interferon-mediated antiviral and antiproliferative activities. J Biol Chem. 1998;273:35056–35062.[PubMed][Google Scholar]
  • 396. Squire J, Zhou A, Hassel B A, Nie H, et al Localization of the interferon-induced, 2-5A-dependent Rnase Gene (RNS4) to human chromosome 1q25. Genomics. 1994;19:174–175.[PubMed][Google Scholar]
  • 397. Squire J, Meurs E G, Chong K L, McMillan N A J, Hovanessian A G, Williams B R GLocalization of the human interferon-induced, ds-RNA activated p68 kinase gene (PRKR)to chromosome 2p21–p22. Genomics. 1993;16:768–770.[PubMed][Google Scholar]
  • 398. Staeheli P, Sutcliffe J GIdentification of a second interferon-regulated murine Mx gene. Mol Cell Biol. 1988;8:4524–4528.[Google Scholar]
  • 399. Staeheli P, Haller O, Boll W, Lindenmann J, Weissmann CMx protein: constitutive expression in 3T3 cells transformed with cloned Mx cDNA confers selective resistance to influenza virus. Cell. 1986;44:147–158.[PubMed][Google Scholar]
  • 400. Staeheli P, Pitossi F, Pavlovic JMx proteins: GTPases with antiviral activity. Trends Cell Biol. 1993;3:268–272.[PubMed][Google Scholar]
  • 401. Stark G R, Kerr I M, Williams B R, Silverman R H, Schreiber R DHow cells respond to interferons. Annu Rev Biochem. 1998;67:227–264.[PubMed][Google Scholar]
  • 402. Starr R, Willson T A, Viney E M, Murray L J, Rayner J R, Jenkins B J, Gonda T J, Alexander W S, Metcalf D, Nicola N A, Hilton D JA family of cytokine-inducible inhibitors of signalling. Nature. 1997;387:917–921.[PubMed][Google Scholar]
  • 403. Steimle V, Siegrist C A, Mottet A, Lisowska-Grospierre B, Mach BRegulation of MHC class II expression by interferon-gamma mediated by the transactivator gene CIITA. Science. 1994;265:106–109.[PubMed][Google Scholar]
  • 404. Sterner D E, Berger S LAcetylation of histones and transcription-related factors. Microbiol Mol Biol Rev. 2000;64:435–459.[Google Scholar]
  • 405. Stojdal D F, Abraham N, Knowles S, Marius R, Brasey A, Lichty B D, Brown E G, Sonenberg N, Bell J CThe murine double-stranded RNA-dependent protein kinase PKR is required for resistance to vesicular stomatitis virus. J Virol. 2000;74:9580–9585.[Google Scholar]
  • 406. Tan S L, Katze M GThe emerging role of the interferon-induced PKR protein kinase as a apoptotic effector: a new face of death. J Interferon Cytokine Res. 1999;19:543–554.[PubMed][Google Scholar]
  • 407. Tan S L, Nakao H, He Y, Vijaysri S, Neddermann P, Jacobs B L, Mayer B J, Katze M GNS5A, a nonstructural protein of hepatitis C virus, binds growth factor receptor-bound protein 2 adaptor protein in a Src homology 3 domain/ligand-dependent manner and perturbs mitogenic signaling. Proc Natl Acad Sci USA. 1999;96:5533–5538.[Google Scholar]
  • 408. Tanaka H, Samuel C E. Mechanism of interferon action. Structure of the gene encoding mouse PKR, the interferon-inducible RNA-dependent protein kinase. Proc Natl Acad Sci USA. 1994;91:7995–7999.
  • 409. Tanaka N, Sato M, Lamphier M, Nozawa H, et al Type I interferons are essential mediators of apoptotic death in virally infected cells. Genes Cells. 1998;3:29–37.[PubMed][Google Scholar]
  • 410. Taraseviciene L, Miczak A, Apirion DThe gene specifying RNAase E (rne) and a gene affecting mRNA stability (ams) are the same gene. Mol Microbiol. 1991;5:851–855.[PubMed][Google Scholar]
  • 411. Taylor DR, Shi S T, Romano P R, Barber G N, Lai M MInhibition of the interferon-inducible protein kinase PKR by HCV E2 protein. Science. 1999;285:107–110.[PubMed][Google Scholar]
  • 412. Teodoro J G, Branton P ERegulation of apoptosis by viral gene products. J Virol. 1997;71:1739–1746.[Google Scholar]
  • 413. Teodoro J G, Branton P ERegulation of p53-dependent apoptosis, transcriptional repression and cell transformation by phosphorylation of the 55-kilodalton E1B protein of human adenovirus type 5. J Virol. 1997;71:3620–3627.[Google Scholar]
  • 414. Thanos D, Maniatis TNF-κB: a lesson in family values. Cell. 1995;80:529–532.[PubMed][Google Scholar]
  • 415. Thomas H C, Török M E, Foster G RHepatitis C virus dynamics in vivo and the antiviral efficacy of interferon alfa therapy. Hepatology. 1999;29:1333–1334.[PubMed][Google Scholar]
  • 416. Thomis D C, Samuel C EMechanism of interferon action: autoregulation of RNA-dependent P1/eIF-2α protein kinase (PKR) expression in transfected mammalian cells. Proc Natl Acad Sci USA. 1992;89:10837–10841.[Google Scholar]
  • 417. Thomis D C, Samuel C EMechanism of interferon action: evidence for intermolecular autophosphorylation and autoactivation of the interferon-induced, RNA-dependent protein kinase PKR. J Virol. 1993;67:7695–7700.[Google Scholar]
  • 418. Thomis D C, Samuel C EMechanism of interferon action: characterization of the intermolecular autophosphorylation of PKR, the interferon-induced, RNA-dependent protein kinase. J Virol. 1995;69:5195–5198.[Google Scholar]
  • 419. Thomis D C, Doohan J D, Samuel C EMechanism of interferon action: cDNA structure, expression and regulation of the interferon-induced, RNA-dependent PI/eIF-2α protein kinase from human cells. Virology. 1992;188:33–46.[PubMed][Google Scholar]
  • 420. Tollefson A E, Hermiston T W, Lichtenstein D L, et al Forced degradation of Fas inhibits apoptosis in adenovirus-infected cells. Nature. 1998;392:726–730.[PubMed][Google Scholar]
  • 421. Tschopp J, Thome M, Hofmann K, Meinl EThe fight of viruses against apoptosis. Curr Opin Genet Dev. 1998;8:82–87.[PubMed][Google Scholar]
  • 422. Ulker N, Samuel C E. Mechanism of interferon action: inhibition of vesicular stomatitis virus replication in human amnion U cells by cloned human gamma-interferon. II. Effect on viral macromolecular synthesis. J Biol Chem. 1985;260:4324–4330.[PubMed]
  • 423. Van den Broek M F, Müller U, Huang S, et al Antiviral defense in mice lacking both alpha/beta and gamma interferon receptors. J Virol. 1995;69:4792–4796.[Google Scholar]
  • 424. Van der Bliek A MFunctional diversity in the dynamin family. Trends Cell Biol. 1999;3:96–102.[PubMed][Google Scholar]
  • 425. Voeten J T M, Bestebroer T M, Nieuwkoop N J, Fouchier F A M, Osterhaus A D, Rimmelzwaan G FAntigenic drift in the influenza A virus (H3N2) nucleoprotein and escape from recognition by cytotoxic T lymphocytes. J Virol. 2000;74:6800–6807.[Google Scholar]
  • 426. Wagner R W, Smith J E, Cooperman B S, Nishikura KA double-stranded RNA unwinding activity introduces structural alterations by means of adenosine to inosine conversions in mammalian cells and Xenopus eggs. Proc Natl Acad Sci USA. 1989;86:2647–2651.[Google Scholar]
  • 427. Waldburger J M, Masternak K, Muhlethaler-Mottet A, Villard J, Peretti M, Landmann S, Reith WLessons from the bare lymphocyte syndrome: molecular mechanisms regulating MHC class II expression. Immunol Rev. 2000;178:148–165.[PubMed][Google Scholar]
  • 428. Wang H, Chatterjee G, Meyer J J, Liu C-J, Manjunath N A, Bray-Ward P, Lengyel PCharacteristics of three homologous 202 genes (ifi202a, ifi202b, ifi202c) from the murine interferon-activatable gene 200 cluster. Genomics. 1999;60:281–294.[PubMed][Google Scholar]
  • 429. Wang Q, Floyd-Smith GThe p69/71 2-5A synthetase promoter contains multiple regulatory elements required for interferon-alpha-induced expression. DNA Cell Biol. 1997;16:1385–1394.[PubMed][Google Scholar]
  • 430. Wang Y, Zeng Y, Murray J M, Nishikura KGenomic organization and chromosomal location of the human dsRNA adenosine deaminase gene. J Mol Biol. 1995;254:184–195.[PubMed][Google Scholar]
  • 431. Wathelet M G, Linc C H, Parekh B S, Ronco L V, Howley P M, Maniatis TVirus infection induces the assembly of coordinately activated transcription factors on the IFN-beta enhancer in vivo. Mol Cell. 1998;1:507–518.[PubMed][Google Scholar]
  • 432. Weaver B K, Kumar K P, Reich N CInterferon regulatory factor 3 and CREB-binding protein/p300 are subunits of double-stranded RNA-activated transcription factor DRAF1. Mol Cell Biol. 1998;18:1359–1368.[Google Scholar]
  • 433. Weber F, Haller O, Kochs GMxA GTPase blocks reporter gene expression of reconstituted Thogoto virus ribonucleoprotein complexes. J Virol. 2000;74:560–563.[Google Scholar]
  • 434. Weier H U G, George C X, Greulich K M, Samuel C EThe interferon-inducible, double-stranded RNA-specific adenosine deaminase gene (DSRAD) maps to human chromosome 1q21.1-21.2. Genomics. 1995;30:372–375.[PubMed][Google Scholar]
  • 435. Weier H U G, George C X, Lersch R A, Breitweser S, Cheng J F, Samuel C EAssignment of the RNA-specific adenosine deaminase gene (Adar) to mouse chromosome 3F2 by in situ hybridization. Cytogenet Cell Genet. 2000;89:214–215.[PubMed][Google Scholar]
  • 436. Weiler S R, Gooya J B, Ortiz M, Tsai S, Collins S J, Keller RD3: a gene induced during myeloid cell differentiation of Linlo c-Kit+Sca-1(+) progenitor cells. Blood. 1999;93:527–536.[PubMed][Google Scholar]
  • 437. Weiner A, Erickson A L, Kansopon J, Crawford J, Muchmore E, Hughes A L, Houghton M, Walker C MPersistent hepatitis C virus infection in a chimpanzee is associated with emergence of a cytotoxic T lymphocyte escape variant. Proc Nat Acad Sci USA. 1995;92:2755–2759.[Google Scholar]
  • 438. White ELife, death, and the pursuit of apoptosis. Genes Dev. 1996;10:1–15.[PubMed][Google Scholar]
  • 439. Williams B R G, Saunders M E, Willard W FInterferon-regulated human 2-5A synthetase gene maps to chromosome 12. Somatic Cell Mol Genet. 1986;12:403–408.[PubMed][Google Scholar]
  • 440. Witt P L, Marie I, Robert N, Irizarry A, et al Isoforms p69 and p100 of 2′,5′-oligoadenylate synthetase induced differentially by interferons in vivo and in vitro. J Interferon Res. 1993;13:17–23.[PubMed][Google Scholar]
  • 441. Wreschner D H, McCaule J W, Skehel J J, Kerr I MInterferon action-sequence specificity of the ppp(A2′p)nA-dependent ribonuclease. Nature. 1981;289:414–417.[PubMed][Google Scholar]
  • 442. Xing Z, Zganiacz A, Wang J, Divangahi M, Nawaz FIL-12 independent Th1-type immune responses to respiratory viral infection: requirement of IL-18 for IFN-gamma release in the lung but not for the differentiation of viral-reactive Th1-type lymphocytes. J Immunol. 2000;164:2575–2584.[PubMed][Google Scholar]
  • 443. Yang Y L, Reis L F L, Pavlovic J, Aguzzi A, Schafer R, Kumar A, Williams B R G, Aguet M, Weissmann CDeficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J. 1995;14:6095–6106.[Google Scholar]
  • 444. Yasukawa H, Sasaki A, Yoshimura ANegative regulators of cytokine signaling pathways. Annu Rev Immunol. 2000;18:143–164.[PubMed][Google Scholar]
  • 445. Yeow W-S, Au W-C, Juang Y-T, Fields C D, Dent C L, Gewert D R, Pitha PReconstitution of virus-mediated expression of interferon a genes in human fibroblast cells by ectopic interferon regulatory factor-7. J Biol Chem. 2000;275:6313–6320.[PubMed][Google Scholar]
  • 446. Yewdell J W, Bennink J RMechanisms of viral interference with MHC class I antigen processing and presentation. Annu Rev Cell Dev Biol. 1999;15:579–606.[Google Scholar]
  • 447. Yoneyama M, Suhara W, Fukuhara Y, Fukuda M, Nishida E, Fujita TDirect triggering of the type I interferon system by virus infection: activation of a transcription factor complex containing IRF-3 and CBP/p300. EMBO J. 1998;17:1087–1095.[Google Scholar]
  • 448. York I A, Rock K LAntigen processing and presentation by the class I major histocompatibility complex. Annu Rev Immunol. 1996;14:369–396.[PubMed][Google Scholar]
  • 449. Young D F, Didcock L, Goobourn S, Randall R E. Paramyxoviridae use distinct virus-specific mechanisms to circumvent the interferon response. Virology. 2000;269:383–390.[PubMed]
  • 450. Young H ARegulation of interferon-γ gene expression. J Interferon Cytokine Res. 1996;16:563–568.[PubMed][Google Scholar]
  • 451. Yu Z, Manickan E, Rouse B TRole of interferon-gamma in immunity to herpes simplex virus. J Leukoc Biol. 1996;60:528–532.[PubMed][Google Scholar]
  • 452. Yue Z, Shatkin A JDouble-stranded RNA-dependent protein kinase PKR is regulated by reovirus structural proteins. Virology. 1997;234:364–371.[PubMed][Google Scholar]
  • 453. Zhang J J, Zhao Y, Chait B T, Lathem W W, Ritzi M, Knippers R, Darnell J E., Jr Ser727-dependent recruitment of MCM5 by Stat1alpha in IFN-gamma-induced transcriptional activation. EMBO J. 1998;17:6963–6971.
  • 454. Zhang L, Pagano J SIRF-7, a new interferon regulatory factor associated with Epstein-Barr virus latency. Mol Cell Biol. 1997;17:5748–5757.[Google Scholar]
  • 455. Zhou A, Paranjape J M, Der S D, Williams B R G, Silverman R HInterferon action in triply deficient mice reveals the existence of alternative antiviral pathways. Virology. 1999;258:435–440.[PubMed][Google Scholar]
  • 456. Zhou A, Paranjape J, Brown T L, Nie H, Naik S, Dong B, Chang A, Trapp B, Fairchild R, Colmenares C, Silverman R HInterferon action and apoptosis are defective in mice devoid of 2′,5′-oligoadenylate-dependent RNase L. EMBO J. 1997;16:6355–6363.[Google Scholar]
  • 457. Zhou A, Hassel B A, Silverman R HExpression cloning of 2-5A-dependent RNAase: a uniquely regulated mediator of interferon action. Cell. 1993;72:753–765.[PubMed][Google Scholar]
  • 458. Zhu H, Cong J P, Mamtora G, Gingeras T, Shenk TCellular gene expression altered by human cytomegalovirus: global monitoring with oligonucleotide arrays. Proc Natl Acad Sci USA. 1998;95:14470–14475.[Google Scholar]
  • 459. Zhu H, Cong J P, Shenk TUse of differential display analysis to assess the effect of human cytomegalovirus infection on the accumulation of cellular RNAs: induction of interferon-responsive RNAs. Proc Natl Acad Sci USA. 1997;94:13985–13990.[Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.