Antibacterial and antibiotic-modulation activity of six Cameroonian medicinal plants against Gram-negative multi-drug resistant phenotypes.
Journal: 2016/October - BMC Complementary and Alternative Medicine
ISSN: 1472-6882
Abstract:
BACKGROUND
Bacterial Infections involving multi-drug resistant (MDR) phenotypes constitute a worldwide health concern. The present work was designed to assess the antibacterial properties of the methanol extracts of six medicinal plants (Anthocleista schweinfurthii, Nauclea latifolia, Boehmeria platyphylla, Caucalis melanantha, Erigeron floribundus and Zehneria scobra) and the effects of their associations with antibiotics on MDR Gram-negative bacteria over-expressing active efflux pumps.
METHODS
The antibacterial activities and the ability to potentiate antibiotic effects of the methanol extracts the tested plants were evaluated in vitro against twenty eight Gram-negative bacteria expressing MDR phenotypes, using broth microdilution method. The phytochemical screening of these extracts was also performed using standard methods.
RESULTS
All tested extracts displayed moderate to low antibacterial activity on at least 14.3 % of the 28 tested bacteria, with MIC values ranged from 128 to 1024 μg/mL. The best antibacterial spectrum was observed with Naulcea latifolia bark extract. Extracts from A. schweinfurthii fruits, N. latifolia stem bark, Z. scobra and N. latifolia leaves showed synergistic effects with many antibiotics against MDR bacteria.
CONCLUSIONS
The overall results of the present study provide information for the possible use of the studied plants, especially Nauclea latifolia in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.
Relations:
Content
Citations
(2)
References
(20)
Chemicals
(2)
Organisms
(2)
Processes
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
BMC Complementary and Alternative Medicine. Dec/31/2015; 16
Published online May/3/2016

Antibacterial and antibiotic-modulation activity of six Cameroonian medicinal plants against Gram-negative multi-drug resistant phenotypes

Abstract

Background

Bacterial Infections involving multi-drug resistant (MDR) phenotypes constitute a worldwide health concern. The present work was designed to assess the antibacterial properties of the methanol extracts of six medicinal plants (Anthocleista schweinfurthii, Nauclea latifolia, Boehmeria platyphylla, Caucalis melanantha, Erigeron floribundus and Zehneria scobra) and the effects of their associations with antibiotics on MDR Gram-negative bacteria over-expressing active efflux pumps.

Methods

The antibacterial activities and the ability to potentiate antibiotic effects of the methanol extracts the tested plants were evaluated in vitro against twenty eight Gram-negative bacteria expressing MDR phenotypes, using broth microdilution method. The phytochemical screening of these extracts was also performed using standard methods.

Results

All tested extracts displayed moderate to low antibacterial activity on at least 14.3 % of the 28 tested bacteria, with MIC values ranged from 128 to 1024 μg/mL. The best antibacterial spectrum was observed with Naulcea latifolia bark extract. Extracts from A. schweinfurthii fruits, N. latifolia stem bark, Z. scobra and N. latifolia leaves showed synergistic effects with many antibiotics against MDR bacteria.

Conclusion

The overall results of the present study provide information for the possible use of the studied plants, especially Nauclea latifolia in the control of Gram-negative bacterial infections including MDR species as antibacterials as well as resistance modulators.

Electronic supplementary material

The online version of this article (doi:10.1186/s12906-016-1105-1) contains supplementary material, which is available to authorized users.

Background

Infectious diseases still represent one of the major health concern worldwide [1]. According to the National Institute of Health, infectious diseases are the second cause of death and the leading cause of loss of productive life years worldwide. Bacterial infections are responsible of about 70 % of cases of death related to microorganisms [1]. The use of antibiotics and hygiene rules helped to fight infectious diseases in the past. However, they are becoming increasingly difficult to control as results of the spread of resistant phenotypes. The resistance to antibiotics has increased in recent decades, mainly due of their inappropriate use [2]. Bacteria have developed several mechanisms of resistance including active efflux which plays an important role in multi-drug resistance (MDR), mainly in Gram-negative bacteria [3]. There is a need for the discovery of new active antimicrobials to combat MDR microorganisms. Amongst the new areas explored to overcome infectious diseases caused by MDR bacteria, medicinal plants seem to offer an ideal alternative since they are readily available source of bioactive agents and are well accepted by about 80 % of the world population. Many African medicinal plants and their metabolites were previously found active against MDR Gram-negative bacteria [4, 5]. Also the synergistic activities of some African medicinal plants with antibiotics against MDR Gram-negative bacteria were reported [5, 6]. It was demonstrated that several naturally occurring efflux pump inhibitors can restore the activity of antibiotics against MDR bacteria [7, 8]. The present study was therefore designed to investigate the antibacterial potential against MDR Gram-negative phenotypes expressing active efflux pumps of six Cameroonian medicinal plants used traditionally in the treatment of bacterial infections, namely Anthocleista schweinfurthii Gilg.(Loganiaceae), Boehmeria platyphylla D. Don (Urticaceae), Caucalis melanantha (Hochst/Hien) (Urticaceae), Erigeron floribundus (H.BK) (Asteraceae), Nauclea latifolia Smith (Rubiaceae) and Zehneria scobra (cf) Sondev (Cucurbitaceae).

Methods

Plant materials and extraction

The plant materials used in this study were collected on April 2013 in West and South West regions of Cameroon and identified by a specialist of the National Herbarium (Table 1). The plants included two trees namely Anthocleista schweinfurthii and Nauclea latifolia, and four herbs namely Boehmeria platyphylla, Caucalis melanantha, Erigeron floribundus and Zehneria scobra. The whole plant was collected for herbs whilst leaves, fruits and stem bark were collected for trees. Each plant material was dried at room temperature and powdered using a grinder. One hundred grams of each powder was then macerated in 1 L of pure methanol (MeOH) for 48 h and filtered through Whatman filter paper no.1. The filtrate obtained was concentrated under reduced pressure in a rotary evaporator to obtain the crude extract. All crude extracts were then kept at 4 °C until further uses.

Table 1
General informations and report on evidence of biological activities and chemistry of the studied plants
(Loganiaceae); 32389/HNC(Urticaceae); 27550/SRF/CAM(Apiaceae); 32891/HNC(Asteraceae); 5619S/RF/Cam(Rubiaceae); 34577/HNC(Cucurbitaceae); 19668/SRF/CAM
Species (family); Voucher number*Traditional usesParts used traditionallyArea of plant collectionBioactive or potentially bioactive componentsBioactivities
Anthocleista schweinfurthii Gilg.Hernia, female sterility, stomach-ache in women, ovarian problems, venereal diseases, bronchitis, fever, purgative, malaria, hard abscesses anthelminthic, otitis, ophthalmia, pain, malaria, cancers, venereal diseases, bacterial diseases [21]Stem bark, roots, Sap of young leaves, leavesBagangté, West region of CameroonPolyphenols, alkaloids, terpenes and steroids [21], schweinfurthiin 1, bauerenone 2, bauerenol 3, 1-hydroxy-3,7,8 trimethoxy-xanthone 4 and 1, 8-dihydroxy-3, 7 dimethoxy-xanthone 5 [35]Antibacterial activity against Staphylococcus aureus and Escherichia coli [21]
Boehmeria platyphylla D. DonStomachic [36] and dysentery [37], control bleeding [28], skin burnsRoots, leavesLebialem, South West region of CameroonAcetophenone (3,4-dimethoxy-w-(2'-piperidy1)) [27], cryptopleurine [28].Nor reported
Caucalis melanantha (Hochst/Hien)Evil eye [38], epilepsy [39], malaria, Stomachaches gastritis [40]Leaves, roots, whole plantLebialem, South West region of Cameroonα-Pinene, sabinene and terpinen-4-ol [31]Antifungal activity [31]
Erigeron floribundus (H.BK)Skin disorders [32], Acquired immunodefiency syndrome (AIDS) therapy [41], antipyretic, and anti-inflammatory [42], gastrointestinal tract infectionsWhole plantLebialem, South West region of CameroonSaponins, flavonods, tannins, phenols, alkaloids and essential oils [42], Phenolics, olean-3-oleil-12,18 diene [43].Analgesic and antiinflammatory [42]; antifungal activity against Epidermophyton floccosum, Microsporum canis, M. gypseum, M. langeronii, Trichophyton mentagrophytes, T. rubrum, T. soudanense and Scopulariopsis brevicaulis [44]
Nauclea latifolia SmithGonorrhea [45], hypertension [46], gastrointestinal tract disorders [47], prolong menstrual flow [48]. stomach pain, constipation, fever, diarrhoea, piles dysentery [49].Stem bark, leaves, roots, fruitsBagangté, West region of CameroonNaucleamides A,B,C,D,E [50]antimicrobial activity of methanol extract against E. coli, S. dysenteriae, S. aureus, Bacillus subtilis and Aspergillus niger [49]
Zehneria scobra (cf) SondevFever, diarrhea, skin diseases, stomach pain, jaundice and kidney infection [51]Leaves, frits, flowers, roots shootBafou, West region of CameroonGypenoside [51]Antimicrobial activity of ethanol extract against E-coli, Pseudomonas auruginosa, S. aureus, E. coli [51], Vibrio cholerae, Enterobacter aerogenes, Klebsiella pneumoniae, Salmonella paratyphi, Proteus mirabilis, Proteus vulgaris, Bacillus cereus, B. subtilis and Sterptococcus pneumonie [52]

* HNC Cameroon National Herbarium, SRF Société des Réserves Forestières du Cameroun

Phytochemical screening

The major phytochemical classes such as phenols tannins, flavonoids, saponins, alkaloids, anthraquinones, cardiac glycosides, steroids and triterpenes (Table 2) were investigated according to the common described phytochemical methods [913].

Table 2
Preliminary chemical composition of the studied plant extracts
PlantPart used*PhenolsTanninsFlavonoidsSaponinsAlkaloidsAnthraquinonesCardiac glycosidesSteroidsTriterpenes
A. melananthaW+++--++--
A. SchweinfurthiiB++---++-+
F++---++-+
L++----+--
B. platyphyllaW++---++--
E. floribundusW++----+--
N. latifoliaB++---++++
F++---++-+
L++---++++
Z. scobraW+---+-+--

Extract were from [B stem bark, F fruits, L leaves, W whole plant]. (+): Present; (-): Absent

Chemicals for antibacterial assays

Seven commonly used antibiotics including tetracycline (TET), kanamycin (KAN), streptomycin (STR), ciprofloxacin (CIP), norfloxacin (NOR), chloramphenicol (CHL), ampicillin (AMP), erythromycin (ERY) (Sigma-Aldrich, St Quentin Fallavier, France) were used. p-Iodonitrotetrazolium chloride 0.2 % (INT) and phenylalanine arginine β-naphthylamide (PAβN) (Sigma-Aldrich) were used as bacterial growth indicator and efflux pumps inhibitor respectively.

Microorganisms and growth conditions

Pathogenic microorganisms used in the present study were Gram-negative bacteria including MDR isolates (Laboratory collection) and reference strains (American Type Culture Collection) of Escherichia coli (ATCC8739, ATCC10536, AG100, AG100A, AG100ATet, AG102, MC4100 W3110), Enterobacter aerogenes (ATCC13048, CM64, EA27, EA289, EA298, EA294), Klebsiella pneumoniae (ATCC11296, KP55, KP63, K24, K2), Enterobacter cloacae (ECCI69, BM47, BM67), Pseudomonas aeruginosa (PA01, PA124) and Providencia stuartii (ATCC29916, NEA16, PS2636, PS299645). The clinical strains were the laboratory collection from UMR-MD1, University of Marseille, France. Their features are reported in Additional file 1: Table S1. They were maintained at 4 °C and sub-cultured on a fresh appropriate Mueller Hinton Agar (MHA) for 24 h before any antibacterial test.

Antibacterial assays

The MICs of the tested extracts were determined using a rapid INT colorimetric assay [14]. Briefly, test samples were first dissolved in dimethylsulfoxide/ Mueller Hinton Broth (DMSO/MHB). The solution obtained was then added to MHB and serially diluted two fold (in a 96-well microtilter plate). One hundred microliters of inoculums (1.5× 106 CFU/ml) prepared in MHB were then added. The plates were covered, agitated with a shaker to mix the contents of the wells and incubated at 37 °C for 18 h. The final concentration of DMSO was 2.5 %, a concentration at which DMSO does not affect bacterial growth. Wells containing MHB, 100 μl of inoculum, and DMSO at a final concentration of 2.5 % served as the negative control. Chloramphenicol was used as reference antibiotic. The MICs of each extract were detected after 18 h of incubation at 37 °C after addition of 40 μl INT (0.2 mg/ml) and incubation at 37 °C for 30 min. Viable bacteria reduce INT with appearance of a pink dye. The MIC of each sample was defined as its lowest concentration that prevented this change and resulted in the complete inhibition of microbial growth. The Minimum Bactericidal Concentration (MBC) was determined by sub-culturing samples from the wells with concentrations above or equal to the MIC on new plates of Mueller Hinton broth (MHB). The MBC was considered as the lowest concentration of the extract which prevented appearance of pink color after addition of INT. Each assay was performed in triplicate at three different days.

Antibiotic-modulation assay

To evaluate the antibiotic resistance modifying activity of the extracts, the MIC of antibiotics were determined in the presence or absence of the plant extracts using the broth microdilution technique as described above. After a preliminary assay on two MDR bacteria, P. aeruginosa PA124 and E. aerogenes CM64 (Additional file 1: Tables S3 and S4), extracts from A. Schweinfurthii fruits, N. Latifolia leaves and stem bark, and from the whole plant of Z. scobra were selected and tested at their MIC/2 and MIC/5 in combination with seven antibiotics (CHL, AMP, KAN, NOR, ERY, TET and STR) on six MDR bacterial strains (P. aeruginosa PA124, E. aerogenes EA289 and CM64, E. coli AG100, P. stuartii NAE16 and K. pneumoniae K24).

The reverse of Fractional Inhibitory concentration (1/FIC) was calculated as follows:\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$ \mathsf{1}/\mathrm{F}\mathrm{I}\mathrm{C} = \kern0.5em \mathrm{M}\mathrm{I}{\mathrm{C}}_{\mathrm{Antibiotic}\ \mathrm{alone}}/\mathrm{M}\mathrm{I}{\mathrm{C}}_{\mathrm{Antibiotic}\ \mathrm{in}\ \mathrm{combination}\ \mathrm{with}} $$\end{document}1/FIC=MICAntibioticalone/MICAntibioticincombinationwith

The interpretation was made as follows: Synergistic (2), Indifferent (1 to 0.5), or Antagonistic (≤0.25) [5, 15]. All assays were performed in triplicate and repeated thrice.

Results

Phytochemical composition of the tested extracts

The main classes of secondary metabolites for each extract were screened and the results are summarized in Table 2. It appears that all the plant extracts of this study possess at least 3 classes of screened secondary metabolites. Only three classes of the screened phytochemicals were detected in the extracts from Z. scobra, E. floribundus and A. schweinfurthii leaves. Extracts from N. latifolia leaves and stem bark contained six phytochemical classes. All the extracts contained phenols and cardiac Glycosides.

Antibacterial activity

The results (Additional file 1: Table S2) showed that all extracts displayed antibacterial activity against at least 4/28 (14.3 %) tested bacterial strains, with MIC values ranged from 128 to 1024 μg/mL. Extracts from A. schweinfurthii leaves, fruits and bark exerted inhibitory effects respectively against 14/28 (50 %), 13/28 (46.4 %) and 8/28 (28.6 %) studied bacteria. The extracts from the fruits and leaves of N. latifolia were active respectively on 6/28 (21.4 %) and 7/28 (25 %) tested bacteria whilst the bark extract displayed the best spectrum of activity [active on 22/28 (78.6 %) tested bacteria]. Extracts of B. platyphylla and Erigeron floribundus also showed large spectra of antibacterial activity with MIC values recorded on 17/28 (60.7 %) and 21/28 (75 %) bacterial strains respectively. Causalis melanantha and Z. scobra extracts displayed low antibacterial spectra [MIC recorded respectively on 4/28 (14.3 %) and 7/28 (25 %) tested bacterial]. P. aeuginosa PA124 appeared to be the most resistant bacteria strain with the sensitivity observed only towards N. latifolia bark extract.

Antibiotic resistance modifying activities of the plant extracts

Preliminary results obtained in two most resistant strains, P. aeruginosa PA124 and E. aerogenes CM64 (results presented in Additional file 1: Tables S3 and S4) allowed selecting the following extracts: A. schweinfurthii fruits, N. latifolia leaves and bark and Z. scobra as well as the appropriate sub-inhibitory concentrations of MIC/2 and MIC/5 for further studies. From the results summarised in Tables 3, 5, 5 and 6, it appears that all the four extracts improved the activities of antibiotics, from 2 to more than 64 folds. The highest activities were observed with A. schweinfurthii fruits (Table 3) and Z. scobra (Table 6). A. schweinfurthii fruits potentiated the activities of TET on 66.7 % and 50 % of the bacteria strains at MIC/2 and MIC/5 respectively. It also increased the activity of KAN (MIC/2 and MIC/5) and STR (MIC/2) in 50 % of the tested bacterial strains while Z. scobra improved the activities of STR on 66.7 % and 50 % of the bacteria strains at MIC/2 and MIC/5 respectively. Z. scobra also improved the activity of CHL on 50 % of the tested bacterial strains at the two sub-inhibitory concentrations of MIC/2 and MIC/5 (Table 6). Synergistic effects (50 % of antibiotic activity potentiating at MIC/2 and MIC/5) were observed with N. Latifolia leaves extract (Table 5) on TET and STR. The highest rate of improvement of antibiotic activity by N. Latifolia stem bark extract was rather noticed on TET and KAN with a rate of 33.3 %. Among the four extracts, this later displayed the lowest antibiotic potentiating effect. Moreover, no synergistic effect was observed with NOR, while synergy between the studied extracts and antibiotics were observed with Ampicilin, with a rate of only 16.67 % (Table 5).

Table 3

Effect of sub-inhibitory concentrations of Anthocleista schweinfurthii fruits extract on the activities of first line antibiotics against Gram-negative MDR bacteria

Antibiotics and concentrations of extractBacterial strains and MIC values (μg/mL)PBSS (%)
K. pneumoniae K24P. stuartii NAE16E. coli AG100E. aerogenes EA289P. aeruginosa PA124E. aerogenes CM64
TET064641681632-
MIC/26464(1)I8(2)S8(1)I64(0.25) A16(2)S33.33
MIC /56464(1)I8(2)S8(1)I64(0.25)A16(2)S33.33
NOR0≥641≤0.25-1282(1)I-
MIC/2≥641(1)I≤0.25-128 (1)I2(1)I0
MIC/5≥641(1)I≤0.25-128 (1)I2(1)I0
STR0232≥256646416-
MIC/22(1)I16(2)S≥2568(8)S32(2)S16(1)I50
MIC/52(1)I32(1)I≥2568(8)S32(2)S16(1)I33.33
KAN08883264≤2-
MIC/28(1)I8(1)I2(4)S2(16)S32(2)S≤250
MIC/58(1)I8(1)I4(2)S2(16)S32(2)S≤250
CHL0168851264512-
MIC/28(2)S(2)S8(1)I256(2)S64(1)I256(2)S66.67
MIC/58(2)S(2)S8(1)I512(1)I64(1)I256(2)S50
ERY012816(1)I64128128256-
MIC/264(2)S16(1)I64(1)I128(1)I128(1)I128(2)S33.33
MIC/5128(1)I16(1)I64(1)I128(1)I128(1)I128(2)S16.67
AMP0--128----
MIC/2--32(4)S---16.67
MIC/5--128(1)I---0

(-) : >256 μg/ml; (): fold decrease in MIC values of the antibiotics after association with plants extract; S: Synergy, I: Indifference, A: antagonism, Antibotics (CHL chloramphenicol, AMP ampicillin, KAN kanamycin, NOR norfloxacin, ERY erythromycin, TET tetracycline, STR streptomycin); PBSS percentage of bacteria strain on which synergism has been observed

Discussion

Medicinal plants are potential source of antimicrobial agents used in the treatment of infectious diseases [16]. According to Rios and Recio [17], and Kuete et al. [17], the antibacterial activity of a plant extract is considered significant when the MICs are below 100 μg/mL. The activity is considered moderate when 100 ≤ MIC ≤ 625 μg/mL and weak when MIC are above 625 μg/mL [17]. Therefore, the antibacterial activities reported in the present study can mostly be regarded as moderate or low. This could be explained by the fact that the tested bacteria are mostly MDR phenotypes. In fact, P. aeruginosa and MDR Enterobacteriaceae ( K. pneumoniae, E. aerogenes, E.cloacae and P. stuartii and E. coli) tested in the present study have been classified as antimicrobial-resistant organisms of concern in healthcare facilities [1820]. The previously reported activities of A. schweinfurthii include antibacterial inhibitory effects of n-hexane, dichloromethane, ethyl acetate and methanol extracts from leaves and stem bark against Staphylococcus aureus ATCC 33591 and E. coli ATCC 27195 [21]. The MIC values obtained in the present study were respectively 62.5 and 125 μg/ml against S. aureus and E. coli. Such values were higher than those previously documented, highlighting the MDR feature of the studied bacteria. MBC values were obtained in few cases (Additional file 1: Table S2). A keen look of data (Additional file 1: Table S2) indicates that, in most of the cases, the tested extract exerted bacteriostatic effects with a ratio MBC/MIC above 4. The overall antibacterial activity of the tested extracts could be due their phytochemical composition. However, the presence of a specific class of second metabolite could not guarantee the antibacterial activity of the plant, as this will depend on nature of the compounds, its concentration as well as the possible interactions with other constituents of the extract. It is also surprising that saponins, known to possess antibacterial activities were not detected in the tested extracts; However, this does means that the extract were completely devoid of this class of secondary metabolite; One of the most understandable explanation should that saponins could be present in very little amounts in the tested extract, and therefore could not be detected using the qualitative phytochemical methods. Some cardiac glycosides such as bufalin, oubain, digoxin are toxic meanwhile many of them have therapeutic uses and these primarily involve the treatment of cardiac failure [2224]. Their utility results from an increased cardiac outpout by increasing the force of contraction. By increasing intracellular calcium, cardiac glycosides increase calcium-induced calcium release and thus contraction [23, 24]. The traditional use of the studied plants could suggest that their cardiac glycoside could be not toxic and have very low toxic effects.

To the best of our knowledge, the present work describes for the first time the antibacterial activity of B. platyphylla. This activity could be due to the presence of the detected phytochemicals. In fact, antibacterial compounds such as acetophenone [25] and cryptopleurine [2628] were previously isolated from B. Platyphylla. The antibacterial activity of C. melanantha and E. floribundus is also reported here for the first time. However these plants were previously reported for their antifungal activities [2932]. The antibacterial activities of extracts from Zehneria scobra and Nauclea latifolia [33, 34] were reported on some bacteria: The present study therefore provides additional information on the activity of these plants against MDR Gram-negative phenotypes.

The synergistic effects between antibiotics and the tested plants are also reported here for the first time. The observed synergistic effects could be due to possible interaction between plant constituents and the tested antibiotics. As the strains used in this study are known to actively expressed efflux pumps, one of the possible explanations for the observed synergistic effects could be the ability of the constituents of the extracts to act as efflux pumps inhibitor. This can explain why the effect of antibiotics with intracellular targets such as STR, CHL and KAN increased contrary to that of beta-lactamine (AMP) acting in the cell wall (Tables 3, 4, 5 and 6).

Table 4

Effect of sub-inhibitory concentrations of Nauclea latifolia stem bark extract on the activities of first line antibiotics against Gram-negative MDR bacteria

Antibiotics and concentrations of extractBacterial strains and MIC values (μg/mL)PBSS (%)
K. pneumoniae K24P. stuartii NAE16E. coli AG100E. aerogenes EA289P. aeruginosa PA124E. aerogenes CM64
TET064641681632-
MIC/264(1)I64(1)I8(2)S8(1)I16(1)I16(2)S33.33
MIC /564(1)I64(1)I16(1)I8(1)I16(1)I16(2)S16.67
NOR0≥641≤0.25-1282(1)I-
MIC/2≥641(1)I≤0.25-128 (1)I2(1)I0
MIC /5≥641(1)I≤0.25-128(1)I2(1)I0
STR0232≥256646416-
MIC/22(1)I32(1)I≥25632(2)S64(1)I8(2)S16.67
MIC /52(1)I32(1)I≥25664(1)I64(1)I16(1)I0
KAN08883264≤2-
MIC/28(1)I8(1)I4(2)S16(2)S64(1)I≤233.33
MIC /58(1)I8(1)I8(1)I32(1)I64(1)I≤216.67
CHL0168851264512-
MIC/216(1)I4(2)S8(1)I512(1)I64(1)I51216.67
MIC /516(1)I8(1)I8(1)I512(1)I64(1)I5120
ERY012816(1)I64128128256-
MIC/2128(1)I16(1)I64(1)I128(1)I128(1)I128(2)S16.67
MIC /5128(1)I16(1)I64(1)I128(1)I128(1)I256(1)I0
AMP0--128----
MIC/2--256(2)I---0
MIC /5--256(2)I---0

(-) : >256 μg/ml; (): fold decrease in MIC values of the antibiotics after association with plants extract; S: Synergy, I: Indifference; A: antagonism, Antibotics (CHL chloramphenicol, AMP ampicillin, KAN kanamycin, NOR norfloxacin, ERY erythromycin, TET tetracycline, STR streptomycin); PBSS percentage of bacteria strain on which synergism has been observed

Table 5

Effect of sub-inhibitory concentrations of Nauclea latifolia leaves extract on the activities of first line antibiotics against Gram-negative MDR bacteria

Antibiotics and concentrations of extractBacterial strains and MIC values (μg/mL)PBSS (%)
K. pneumoniae K24P. stuartii NAE16E. coli AG100E. aerogenes EA289P. aeruginosa PA124E. aerogenes CM64
TET064641681632-
MIC/264(1)I32(2)S8(2)S2(4)S16(1)I32(1)I50.00
MIC /564(1)I32(2)S8(2)S4(2)S16(1)I32(1)I50.00
NOR0≥641≤0.25-1282(1)I-
MIC/2≥641(1)I≤0.25-128 (1)I2(1)I0
MIC /5≥641(1)I≤0.25-128 (1)I2(1)I0
STR0232≥256646416-
MIC/22(1)I16(2)S32(≥8)S16(4)S64(1)I2(8)S50.00
MIC /52(1)I32(1)I32(≥8)S32(2)S64(1)I8(2)S50.00
KAN08883264≤2
MIC/28(1)I8(1)I2(4)S16(2)S64(1)I≤233.33
MIC /58(1)I8(1)I4(2)S32(1)I64(1)I≤216.67
CHL0168851264512-
MIC/216(1)I4(2)S8(1)I256(2)S64(1)I51233.33
MIC /516(1)I4(2)S8(1)I256(2)S64(1)I51233.33
ERY012816(1)I64128128256-
MIC/2128(1)I16(1)I64(1)I128(1)I128(1)I256(1)I0
MIC /5128(1)I16(1)I64(1)I128(1)I128(1)I256(1)I0
AMP0--128----
MIC/2--64(2)S---16.67
MIC /5--128(1)I---0

(-) : >256 μg/ml; (): fold decrease in MIC values of the antibiotics after association with plants extract; S: Synergy, I: Indifference; A: antagonism, Antibotics (CHL chloramphenicol, AMP ampicillin, KAN kanamycin, NOR norfloxacin, ERY erythromycin, TET tetracycline, STR streptomycin); PBSS percentage of bacteria strain on which synergism has been observed

Table 6

Effect of sub-inhibitory concentrations of Zehneria scobra extract on the activities of first line antibiotics against Gram-negative MDR bacteria

Antibiotics and concentrations of extractBacterial strains and MIC values (μg/mL)PBSS (%)
K. pneumoniae K24P. stuartii NAE16E. coli AG100E. aerogenes EA289P. aeruginosa PA124E. aerogenes CM64
TET064641681632-
MIC/264(1)I64(1)I8(2)S8(1)I16(1)I32(1)I16.67
MIC/564(1)I64(1)I8(2)S8(1)I16(1)I32(1)I16.67
NOR0≥641≤0.25-1282(1)I-
MIC/2≥641(1)I≤0.25-128 (1)I2(1)I0
MIC/5≥641(1)I≤0.25-128 (1)I2(1)I0
STR0232≥256646416-
MIC/22(1)I16(2)S≥2568(8)S32(2)S4(4)S66.67
MIC/52(1)I16(2)S≥25616(4)S32(2)S4(4)S50
KAN08883264≤2-
MIC/28(1)I8(1)I4(2)S4(8)S64(1)I≤233.33
MIC/58(1)I8(1)I8(1)I8(4)S64(1)I≤216.67
CHL0168851264512-
MIC/28(2)S(2)S8(1)I512(1)I64(1)I256(2)S50
MIC/58(2)S8(1)I8(1)I512(1)I64(1)I256(2)S50
ERY012816(1)I64128128256-
MIC/2128(1)I16(1)I64(1)I128(1)I128(1)I128(2)S16.67
MIC/5128(1)I16(1)I64(1)I128(1)I128(1)I256(1)I0
AMP0--128----
MIC/2--128(1)I---0
MIC/5--128(1)I---0

(-) : >256 μg/ml; (): fold decrease in MIC values of the antibiotics after association with plants extract; S: Synergy. I: Indifference; A: antagonism. Antibotics (CHL chloramphenicol, AMP ampicillin, KAN kanamycin, NOR norfloxacin, ERY erythromycin, TET tetracycline, STR streptomycin); PBSS percentage of bacteria strain on which synergism has been observed

Conclusion

The overall results of the present study provides baseline information for the possible use of the tested plants, especially A. schweinfurthii, N. Latifolia, B. platyphylla and E. floribundus in the control of infections due to Gram-negative bacteria. The present study indicates that the tested plant extracts alone could not be used efficiently to tackle MDR bacterial infections. However, it was demonstrated that extracts from A. schweinfurthii fruits and Z. scobra could be used in combination with some antibiotics to fight bacterial multi-drug resistance.

Availability of data and materials

The datasets supporting the conclusions of this article are presented in this main paper and supporting material. Plant materials used in this study have been identified at the Cameroon National Herbarium where voucher specimens are deposited.

Consent for publication

Not applicable in this section.

Ethic approval and consent to participate

Not applicable in this section.

Additional file

Additional file 1: Table S1.

Bacterial strains and features. Table S2. Minimal inhibitory concentration (MIC) and minimal bactericidal (MBC) of the plant extracts and CHL on the studied bacteria. Table S3. Effects of different concentrations of plant extracts on the MIC (μg/ml) of antibiotics against P. aeruginosa PA124. Table S4. Effects of different concentrations of plant extracts on the MIC (μg/ml) of antibiotics against E. aerogenes CM64 (DOC 320 kb)

Footnotes

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

DED, VK and BN designed the study; DED and JAKN carried the experiments and wrote the manuscript; VK provided the bacterial strains and chemicals for antibacterial assays; all the authors read and approved the final manuscript.

Acknowledgements

Authors are thankful to the Cameroon National Herbarium (Yaounde) for plants identification. We also acknowledge the UMR-MD1, University of Marseille, France for providing the clinical bacterial strains.

Fundings

The authors declare that they have received no funding for the research reported.

Abbreviations

A schweinfurthiiAnthocleista schweinfurthiiAMPampicillinATCCAmerican type culture collectionB. platyphyllaBoehmeria platyphyllaC melananthaCaucalis melananthaCFUcolony forming unitCHLchloramphenicolCIPciprofloxacinDMSOdimethylsulfoxideE floribundusErigeron floribundusE. aerogenesEnterobacter aerogenesE. cloacaeEnterobacter cloacaeE. coliEscherchia coliERYerythromycinFICfractional inhibitory concentrationINT

p-iodonitrotetrazolium chloride

K. pneumoniaeKlebsiella pneumoniaeKANkanamycinMBCminimum bactericidal concentrationMDRmulti-drug resistantMeOHmethanolMHAMueller Hinton agarMHBMueller Hinton brothMICminimum inhibitory concentrationN. latifoliaNauclea latifoliaNORnorfloxacinP. aeruginosaPseudomona aeruginosaP. stuartiiProvidencia stuartiiPAβN

phenylalanine arginine β-naphthylamide

STRstreptomycinTETtetracyclineZ scobraZehneria scobra

References

  • 1. WalshTRTolemanMAPoirelLNordmannPMetallo-β-lactamase: the quiet before the stormClin Microbiol Rev200518306325[PubMed][Google Scholar]
  • 2. Targant H. L’îlot de multirésistance aux antibiotiques, Salmonella Genomic Island 1 (SGI1): variabilité, diffusion inter - espèces et implication dans la virulence. Lyon: Université Claude Bernard de Lyon 1; 2010.
  • 3. PooleKEfflux-mediated multiresistance in Gram-negative bacteriaClin Microbiol Infect2004101226[PubMed][Google Scholar]
  • 4. KueteVPotential of Cameroonian plants and derived products against microbial infections: a reviewPlanta Med20107614791491[PubMed][Google Scholar]
  • 5. Noumedem J, Mihasan M, Kuiate J, Stefan M, Cojocaru D, Dzoyem J, Kuete V. In vitro antibacterial and antibiotic-potentiation activities of four edible plants against multidrug-resistant Gram-negative species. BMC Complement Altern Med. 2013; 13:190.
  • 6. LacmataSTKueteVDzoyemJPTankeoSBTekeGNKuiateJRPagesJ-MAntibacterial activities of selected Cameroonian plants and their synergistic effects with antibiotics against bacteria expressing MDR phenotypesEvid Based Complement Alternat Med20122012623723[PubMed][Google Scholar]
  • 7. NelsonMLLevySBReversal of tetracycline resistance mediated by different bacterial tetracycline resistance determinants by an inhibitor of the Tet(B) antiport proteinAntimicrob Agents Chemother19994317191724[PubMed][Google Scholar]
  • 8. GermanNWeiPKaatzGWKernsRJSynthesis and evaluation of fluoroquinolone derivatives as substrate-based inhibitors of bacterial efflux pumpsEur J Med Chem20084324532463[PubMed][Google Scholar]
  • 9. HarboneJBPhytochemical methods: A guide to modern techniques of plant analysis1973
  • 11. NgameniBFotsoGWKamgaJAmbassaPAbdouTFankamAGVoukengIKNgadjuiBTAbegazBMKueteVKueteV9 - Flavonoids and Related Compounds from the Medicinal Plants of AfricaMedicinal Plant Research in Africa2013OxfordElsevier301350[Google Scholar]
  • 12. WansiJDDevkotaKPTshikalangeEKueteVKueteV14 - Alkaloids from the Medicinal Plants of AfricaMedicinal Plant Research in Africa2013OxfordElsevier557605[Google Scholar]
  • 13. PoumaleHMPHammRZangYShionoYKueteVKueteV8 - Coumarins and Related Compounds from the Medicinal Plants of AfricaMedicinal Plant Research in Africa2013OxfordElsevier261300[Google Scholar]
  • 14. EloffJNA sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteriaPlanta Med199864711713[PubMed][Google Scholar]
  • 15. CoutinhoHDLimaJGSiqueira-JúniorJPAdditive effects of Hyptis martiusii Benth with aminoglycosides against Escherichia coliIndian J Med Res2010131106108[PubMed][Google Scholar]
  • 16. RiosJRecioMMedicinal plants and antimicrobial activityJ Ethnopharmacol20051008084[PubMed][Google Scholar]
  • 17. KueteVKueteVMedicinal Plant Research in AfricaPharmacology and Chemistry2013OxfordElsevier[Google Scholar]
  • 18. TranQTMahendranKRHajjarECeccarelliMDavin-RegliAWinterhalterMWeingartHPagesJMImplication of porins in beta-lactam resistance of Providencia stuartiiJ Biol Chem20102853227332281[PubMed][Google Scholar]
  • 19. KueteVNgameniBTangmouoJGBollaJMAlibert-FrancoSNgadjuiBTPagesJMEfflux pumps are involved in the defense of Gram-negative bacteria against the natural products isobavachalcone and diospyroneAntimicrob Agents Chemother20105417491752[PubMed][Google Scholar]
  • 20. KueteVAlibert-FrancoSEyongKONgameniBFolefocGNNguemevingJRTangmouoJGFotsoGWKomguemJOuahouoBMBollaJMChevalierJNgadjuiBTNkengfackAEPagèsJMAntibacterial activity of some natural products against bacteria expressing a multidrug-resistant phenotypeInt J Antimicrob Agents201137156161[PubMed][Google Scholar]
  • 21. Ngbolua K-t-N, Mubindukila REN, Mpiana PT, Ashande MC, Baholy R, Ekutsu GE, Gbolo ZB, Fatiany PR. In vitro assessment of antibacterial and antioxidant activities of a Congolese medicinal plant species Anthocleista schweinfurthii Gilg (Gentianaceae). J Modern Drug Discov Drug Deliv Res. 2014;3:1-6.
  • 23. CowanMMPlant products as antimicrobial agentsClin Microbiol Rev1999124564582[PubMed][Google Scholar]
  • 24. BrunetonJToxic plants. Dangerous to humans and animals1999ParisTec & Doc
  • 25. Al-ShammaADrakeSDGuagliardiLEMitscherLASwayzeJKAntimicrobial alkaloids from Boehmeria cylindricaPhytochemistry198221485487[PubMed][Google Scholar]
  • 26. ChoudharyANJuyalVSynthesis of chalcone and their derivatives as antimicrobial agentsInt J Pharm Pharmaceut Sci20113125128[Google Scholar]
  • 27. HartNJohnsSLambertonJ3,4-Dimethoxy-ω-(2'-piperidyl)acetophenone, a new alkaloid from Boehmeria platyphylla Don. (family Urticaceae)Aust J Chem19682113971398[PubMed][Google Scholar]
  • 28. BhattaraiKRMarenIEChaudharyRPMedicinal plant knowledge of the Panchase region in the middle hills of the Nepalese HimalayasBanko Janakari20112123139[Google Scholar]
  • 29. KuiateJKuateSKemadjouNDjokouaSZifackFFokoJAntidermatophitic activities of nine (9) essential oilsEast Centr Afr J Pharmaceut Sci2006769[Google Scholar]
  • 30. KuiateJ-RTsonaAAFokoJBessiereJMMenutCZolloP-HAChemical composition and in vitro antifungal properties of essential oils from leaves and flowers of Erigeron floribundus (H.B. et K.) Sch. Bip. From CameroonJ Essent Oil Res200517261264[PubMed][Google Scholar]
  • 31. TchoumbougnangFJazetDPMWouatsaNAVFekamBFSamezaMLAmvamZPHMenutCComposition and antifungal properties of essential oils from five plants growing in the mountainous area of the West CameroonJ Essent Oil Bear Plants201316679688[PubMed][Google Scholar]
  • 32. BiFTKonéMKouaméNAntifungal activity of Erigeron floribundus (Asteraceae) from Cote d´Ivoire, West AfricaTrop J Pharmaceut Res20087975979[Google Scholar]
  • 33. AkoachereJ-FTKSuylikaYMbahAJAyimeleAGAssobJCNChegaing FodouopSPKodjioNGatsingDIn vitro antimicrobial activity of agents from Spilanthes filicaulis and Laportea ovalifolia against some drug resistant bacteriaBr J Pharmaceut Res201567687[PubMed][Google Scholar]
  • 34. OkwulehieICAkanwaFEAntimicrobial activity of ethanol extract of four indigenous plants from South Eastern NigeriaARPN J Sci Technol20133350355[Google Scholar]
  • 35. MbouangouereRTanePNgamgaDKhanSChoudharyMNgadjuiBA New Steroid and Î-glucosidase Inhibitors from Anthocleista schweinfurthiiRes J Med Plant20071106[PubMed][Google Scholar]
  • 37. NarayanEMPlants and people of Nepal. Narayan E Manandhar2002PortlandTimber Press, Oregon
  • 38. KidaneBAndelTMaesenLJGAsfawZUse and management of traditional medicinal plants by male and Ari ethnic communities in southern EthiopiaJ Ethnobiol Ethnomed20141046[PubMed][Google Scholar]
  • 39. YinegerHKelbessEBekelTLulekaEEthnoveterinary medicinal plants at Bale Mountains National Park, EthiopiaJ Ethnopharmacol20071125570[PubMed][Google Scholar]
  • 40. FochoDANdamWTFongeBAMedicinal plants of Aguambu – Bamumbu in the Lebialem highlands, southwest province of CameroonAfr J Pharm Pharmacol200931113[Google Scholar]
  • 41. YapoFYapiFAhibohHHauhouot-AttounbreM-LGuédéNDjamanJMonnetDImmunomodulatory effect of the aqueous extract of Erigeron floribundus (Kunth) Sch Beep (Asteraceae) Leaf in RabbitsTrop J Pharmaceut Res201110187193[Google Scholar]
  • 42. AsongalemEFoyetHNgogangJFolefocGDimoTKamtchouingPAnalgesic and antiinflammatory activities of Erigeron floribundusJ Ethnopharmacol200491301308[PubMed][Google Scholar]
  • 43. BertoCMaggiFNyaPPettenaABoschieroIDall'AcquaSPhenolic constituents of Erigeron floribundus (Asteraceae), a Cameroonian medicinal plantNat Prod Commun2014916911694[PubMed][Google Scholar]
  • 44. Tra BiFKonéMKouaméNAntifungal activity of Erigeron floribundus (Asteraceae) from Côte d’Ivoire, West AfricaTrop J Pharmaceut Res20087975979[Google Scholar]
  • 46. AkabuePMittalHClinical evaluation of a traditional herbal practice in Nigeria: A preliminary reportJ Ethnopharmacol19826355359[PubMed][Google Scholar]
  • 47. MadubunyiIAnti- hepatotoxic and trypanocidal activities of the ethanolic extract of Nauclea latifolia root barkJ Herbs Spices Med Plants199532353[PubMed][Google Scholar]
  • 48. ElujobaAFemale infertility in the hands of traditional birth attendants in South-West NigeriaFitoterapia199566239248[Google Scholar]
  • 49. AnowiCFNnabuifeCCMbahCOnyekabaTAntimicrobial properties of the methanolic extract of the leaves of Nauclea latifoliaInt J Drug Res Technol201224555[Google Scholar]
  • 50. ShigemoriHKagataTIshiyamaHMorahFOhsakiAKobayashiJNaucleamides A-E: new monoterpene indole alkaloids from Nauclea latifoliaChem Pharmaceut Bull2003515861[PubMed][Google Scholar]
  • 51. TegenuGAntimicrobial activity of solvent extracts of Cucumis ficifolius and Zehneria scabra on test microorganisms2011EthiopiaAddis Ababa University
  • 52. ArulappanMTBrittoJSRuckmaniKKumarMRAntimicrobial and antifungal activities of Zehneria scabra (L.F.) sond against human pathogensInt J Develop Res2015538523859[Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.