Sambutoxin, a new mycotoxin produced by toxic Fusarium isolates obtained from rotted potato tubers.
Journal: 1995/January - Applied and Environmental Microbiology
ISSN: 0099-2240
PUBMED: 7811078
Abstract:
Ninety-nine isolates of Fusarium species were obtained from rotted potato tubers from various parts of Korea. Of these isolates, 80 were identified as Fusarium oxysporum, F. solani, or F. sambucinum. The isolates of these species were grown on autoclaved wheat grains and examined for toxicity in a rat-feeding test. A total of 8 of 57 F. oxysporum isolates, 3 of 14 F. solani isolates, and 5 of 9 F. sambucinum isolates caused the death of the rats. Of the 16 toxic isolates, 1 isolate of F. oxysporum produced a substantial amount of moniliformin, which could account for its toxicity. None of the other 15 isolates produced trichothecenes, moniliformin, fusarochromanone, fumonisin B1, or wortmannin. F. sambucinum PZF-4 produced an unknown toxin in wheat culture. This new toxin, given the trivial name sambutoxin, caused toxic effects in rats, including body weight loss, feed refusal, hemorrhage in the stomach and intestines, and, finally, death when rats were fed diets supplemented with 0.05 and 0.1% sambutoxin. The toxin was also toxic to chicken embryos, and the 50% lethal concentration was 29.6 micrograms per egg. Sambutoxin formed as white crystals that turned purple when combined with reagents such as sulfuric acid and p-anisaldehyde. It exhibited a green color immediately after treatment with potassium ferricyanide-ferric chloride. Its UV spectrum had absorption maxima at 213, 233, and 254 nm, and its infrared spectrum showed an amide group at 1,650 and 1,560 cm-1 and a hydroxy group at 3,185 cm-1. Mass spectrometry showed that the molecular weight of the toxin was 453 and the molecular formula was C28H39NO4.(ABSTRACT TRUNCATED AT 250 WORDS)
Relations:
Content
Citations
(7)
References
(10)
Drugs
(2)
Chemicals
(1)
Organisms
(5)
Processes
(2)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Appl Environ Microbiol 60(12): 4380-4386

Sambutoxin, a new mycotoxin produced by toxic Fusarium isolates obtained from rotted potato tubers.

Abstract

Ninety-nine isolates of Fusarium species were obtained from rotted potato tubers from various parts of Korea. Of these isolates, 80 were identified as Fusarium oxysporum, F. solani, or F. sambucinum. The isolates of these species were grown on autoclaved wheat grains and examined for toxicity in a rat-feeding test. A total of 8 of 57 F. oxysporum isolates, 3 of 14 F. solani isolates, and 5 of 9 F. sambucinum isolates caused the death of the rats. Of the 16 toxic isolates, 1 isolate of F. oxysporum produced a substantial amount of moniliformin, which could account for its toxicity. None of the other 15 isolates produced trichothecenes, moniliformin, fusarochromanone, fumonisin B1, or wortmannin. F. sambucinum PZF-4 produced an unknown toxin in wheat culture. This new toxin, given the trivial name sambutoxin, caused toxic effects in rats, including body weight loss, feed refusal, hemorrhage in the stomach and intestines, and, finally, death when rats were fed diets supplemented with 0.05 and 0.1% sambutoxin. The toxin was also toxic to chicken embryos, and the 50% lethal concentration was 29.6 micrograms per egg. Sambutoxin formed as white crystals that turned purple when combined with reagents such as sulfuric acid and p-anisaldehyde. It exhibited a green color immediately after treatment with potassium ferricyanide-ferric chloride. Its UV spectrum had absorption maxima at 213, 233, and 254 nm, and its infrared spectrum showed an amide group at 1,650 and 1,560 cm-1 and a hydroxy group at 3,185 cm-1. Mass spectrometry showed that the molecular weight of the toxin was 453 and the molecular formula was C28H39NO4.(ABSTRACT TRUNCATED AT 250 WORDS)

Full text

Full text is available as a scanned copy of the original print version. Get a printable copy (PDF file) of the complete article (1.3M), or click on a page image below to browse page by page. Links to PubMed are also available for Selected References.

Selected References

These references are in PubMed. This may not be the complete list of references from this article.
  • Abbas HK, Mirocha CJ. Isolation and purification of a hemorrhagic factor (wortmannin) from Fusarium oxysporum (N17B). Appl Environ Microbiol. 1988 May;54(5):1268–1274.[PMC free article] [PubMed] [Google Scholar]
  • Abbas HK, Mirocha CJ, Gunther R. Mycotoxins produced by toxic Fusarium isolates obtained from agricultural and nonagricultural areas (Arctic) of Norway. Mycopathologia. 1989 Mar;105(3):143–151. [PubMed] [Google Scholar]
  • Abbas HK, Mirocha CJ, Shier WT. Isolation, identification and biological activity of chlamydosporol from Fusarium culmorum HM-8. Mycopathologia. 1992 May;118(2):115–123. [PubMed] [Google Scholar]
  • Burmeister HR, Bennett GA, Vesonder RF, Hesseltine CW. Antibiotic produced by Fusarium equiseti NRRL 5537. Antimicrob Agents Chemother. 1974 Jun;5(6):634–639.[PMC free article] [PubMed] [Google Scholar]
  • el-Banna AA, Scott PM, Lau PY, Sakuma T, Platt HW, Campbell V. Formation of trichothecenes by Fusarium solani var. coeruleum and Fusarium sambucinum in potatoes. Appl Environ Microbiol. 1984 May;47(5):1169–1171.[PMC free article] [PubMed] [Google Scholar]
  • Gelderblom WC, Jaskiewicz K, Marasas WF, Thiel PG, Horak RM, Vleggaar R, Kriek NP. Fumonisins--novel mycotoxins with cancer-promoting activity produced by Fusarium moniliforme. Appl Environ Microbiol. 1988 Jul;54(7):1806–1811.[PMC free article] [PubMed] [Google Scholar]
  • Griffin GF, Chu FS. Toxicity of the Alternaria metabolites alternariol, alternariol methyl ether, altenuene, and tenuazonic acid in the chicken embryo assay. Appl Environ Microbiol. 1983 Dec;46(6):1420–1422.[PMC free article] [PubMed] [Google Scholar]
  • Lee YW, Mirocha CJ, Shroeder DJ, Walser MM. TDP-1, a toxic component causing tibial dyschondroplasia in broiler chickens, and trichothecenes from Fusarium roseum 'Graminearum'. Appl Environ Microbiol. 1985 Jul;50(1):102–107.[PMC free article] [PubMed] [Google Scholar]
  • Veselý D, Veselá D, Jelínek R. Nineteen mycotoxins tested on chicken embryos. Toxicol Lett. 1982 Oct;13(3-4):239–245. [PubMed] [Google Scholar]
  • Vesonder RF, Tjarks LW, Rohwedder WK, Burmeister HR, Laugal JA. Equisetin, an antibiotic from Fusarium equiseti NRRL 5537, identified as a derivative of N-methyl-2,4-pyrollidone. J Antibiot (Tokyo) 1979 Jul;32(7):759–761. [PubMed] [Google Scholar]
Department of Agricultural Biology, College of Agriculture and Life Sciences, Seoul National University, Suwon, Korea.
Department of Agricultural Biology, College of Agriculture and Life Sciences, Seoul National University, Suwon, Korea.
Abstract
Ninety-nine isolates of Fusarium species were obtained from rotted potato tubers from various parts of Korea. Of these isolates, 80 were identified as Fusarium oxysporum, F. solani, or F. sambucinum. The isolates of these species were grown on autoclaved wheat grains and examined for toxicity in a rat-feeding test. A total of 8 of 57 F. oxysporum isolates, 3 of 14 F. solani isolates, and 5 of 9 F. sambucinum isolates caused the death of the rats. Of the 16 toxic isolates, 1 isolate of F. oxysporum produced a substantial amount of moniliformin, which could account for its toxicity. None of the other 15 isolates produced trichothecenes, moniliformin, fusarochromanone, fumonisin B1, or wortmannin. F. sambucinum PZF-4 produced an unknown toxin in wheat culture. This new toxin, given the trivial name sambutoxin, caused toxic effects in rats, including body weight loss, feed refusal, hemorrhage in the stomach and intestines, and, finally, death when rats were fed diets supplemented with 0.05 and 0.1% sambutoxin. The toxin was also toxic to chicken embryos, and the 50% lethal concentration was 29.6 micrograms per egg. Sambutoxin formed as white crystals that turned purple when combined with reagents such as sulfuric acid and p-anisaldehyde. It exhibited a green color immediately after treatment with potassium ferricyanide-ferric chloride. Its UV spectrum had absorption maxima at 213, 233, and 254 nm, and its infrared spectrum showed an amide group at 1,650 and 1,560 cm-1 and a hydroxy group at 3,185 cm-1. Mass spectrometry showed that the molecular weight of the toxin was 453 and the molecular formula was C28H39NO4.(ABSTRACT TRUNCATED AT 250 WORDS)
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.