Induction of genes encoding plastidic phosphorylase from spinach (Spinacia oleracea L.) and potato (Solanum tuberosum L.) by exogenously supplied carbohydrates in excised leaf discs.
Journal: 1997/October - Planta
ISSN: 0032-0935
PUBMED: 9299793
Abstract:
A full-length cDNA encoding plastidic phosphorylase (Pho1, EC 2.4.1.1) from spinach (Spinacia oleracea L.) has been isolated. Analysis of the deduced protein sequence revealed considerable homologies with the corresponding proteins from other plants, animals and prokaryotes. Escherichia coli cells carrying the entire cDNA for Pho1 expressed an active phosphorylase, which resembled the properties of the plastidic isozyme of spinach with respect to its low affinity to glycogen. Expression of Pho1 was studied in spinach at the level of both mRNA and enzyme activity. Plastidic phosphorylase was transcribed in flowers and leaves, but the highest Pho1 transcript levels were found in mature fruits/seeds. This is in agreement with the enzyme activity levels, as Pho1 activity was detected in all tissues tested, but the highest activity was also present in mature fruits/seeds. Since developing seeds are strong sink organs, which import sucrose and accumulate starch, this observation may indicate that plastidic phosphorylase plays a role in starch formation. The assumption has been tested further by a series of induction experiments in which leaf discs from spinach and potato plants were incubated with various carbohydrates. Following incubation, phosphorylase steady-state transcript levels as well as levels of neutral sugars and starch were determined. A similar induction behaviour was found for Pho1 from spinach and Pho1a from potato, indicating the presence of related sugar signal transduction pathways in these two species. In addition, the expression of Pho1a and Agp4 (the large submit of ADPglucose synthase) from potato seems to be partly coordinately regulated by carbohydrates. These data may suggest that the regulation of Pho1 expression is linked to the carbohydrate status of the respective tissue.
Relations:
Citations
(7)
Drugs
(2)
Chemicals
(3)
Organisms
(3)
Processes
(6)
Anatomy
(2)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.