β-Caryophyllene alleviates D-galactosamine and lipopolysaccharide-induced hepatic injury through suppression of the TLR4 and RAGE signaling pathways.
Journal: 2016/July - European Journal of Pharmacology
ISSN: 1879-0712
Abstract:
Agastache rugosa (A. rugosa, Labiatae), a perennial herb spread throughout Korean fields, is widely consumed as a wild edible vegetable and is used in folk medicine. This study examined the hepatoprotective mechanisms of β-caryophyllene (BCP), a major bicyclic sesquiterpene of A. rugosa, against D-galactosamine (GalN) and lipopolysaccharide (LPS)-induced hepatic failure. Mice were given an intraperitoneal injection of BCP (50, 100 and 200 mg/kg) 1 h before GalN (800 mg/kg)/LPS (40 μg/kg) injection and were killed 1 h or 6 h after GalN/LPS injection. GalN/LPS markedly increased mortality and serum aminotransferase activity, both of which were attenuated by BCP. BCP also attenuated increases in serum tumor necrosis factor-α, interleukin 6, and high-mobility group protein B1 levels by GalN/LPS. GalN/LPS significantly increased toll-like receptor (TLR) 4 and receptor for advanced glycation end products (RAGE) protein expression, extracellular signal-related kinase, p38 and c-Jun N-terminal kinase phosphorylation, nuclear factor κB (NF-κB), early growth response protein-1, and macrophage inflammatory protein-2 protein expression. These increases were attenuated by BCP. Furthermore, BCP suppressed increased TLR4 and RAGE protein expression and proinflammatory cytokines production in LPS-treated isolated Kupffer cells. Our findings suggest that BCP protects against GalN/LPS-induced liver injury through down-regulation of the TLR4 and RAGE signaling.
Relations:
Citations
(12)
Diseases
(3)
Chemicals
(9)
Genes
(2)
Organisms
(2)
Processes
(3)
Anatomy
(3)
Affiliates
(3)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.