Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against M pro and cathepsin L
Journal: 2020/August - Biology
Abstract:
The main protease (Mpro) of SARS-CoV-2, the pathogen responsible for the COVID-19 pandemic, is a key antiviral drug target. While most SARS-CoV-2 Mpro inhibitors have a γ-lactam glutamine surrogate at the P1 position, we recently discovered several Mpro inhibitors have hydrophobic moieties at the P1 site, including calpain inhibitors II/XII, which are also active against human cathepsin L, a host-protease that is important for viral entry. To determine the binding mode of these calpain inhibitors and establish a structure-activity relationship, we solved X-ray crystal structures of Mpro in complex with calpain inhibitors II and XII, and three analogues of GC-376, one of the most potent Mpro inhibitors in vitro. The structure of Mpro with calpain inhibitor II confirmed the S1 pocket of Mpro can accommodate a hydrophobic methionine side chain, challenging the idea that a hydrophilic residue is necessary at this position. Interestingly, the structure of calpain inhibitor XII revealed an unexpected, inverted binding pose where the P1' pyridine inserts in the S1 pocket and the P1 norvaline is positioned in the S1' pocket. The overall conformation is semi-helical, wrapping around the catalytic core, in contrast to the extended conformation of other peptidomimetic inhibitors. Additionally, the structures of three GC-376 analogues UAWJ246, UAWJ247, and UAWJ248 provide insight to the sidechain preference of the S1', S2, S3 and S4 pockets, and the superior cell-based activity of the aldehyde warhead compared with the α-ketoamide. Taken together, the biochemical, computational, structural, and cellular data presented herein provide new directions for the development of Mpro inhibitors as SARS-CoV-2 antivirals.
Keywords: 3CL protease; COVID-19; GC-376; SARS-CoV-2; boceprevir; calpain inhibitors; main protease.
Relations:
Content
References
(43)
Drugs
(2)
Chemicals
(5)
Organisms
(1)
Processes
(3)
Similar articles
Articles by the same authors
Discussion board
Version 1 undefined

Structure and inhibition of the SARS-CoV-2 main protease reveals strategy for developing dual inhibitors against M<sup>pro</sup> and cathepsin L

+8 authors
Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, United States
Department of Pharmacology and Toxicology, College of Pharmacy, The University of Arizona, Tucson, AZ, 85721, United States
Department of Pharmaceutical Chemistry, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, 15771, Greece
Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ, 85721, United States
Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, United States
Institute for Antiviral Research, Utah State University, Logan, UT, 84322, United States
Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, 84322, United States
Contributed by

AUTHOR CONTRIBUTIONS

J. W. and Y. C. conceived and designed the study; C. M. expressed the M and PL; C.M. performed the IC50 determination, thermal shift-binding assay, and enzymatic kinetic studies; M. S. carried out M crystallization and structure determination with the assistance of X. Z, and analyzed the data with Y. C.; P. L. performed the molecular dynamics simulations under the guidance of A. K.; A. G. and N. K. synthesized the compounds for co-crystallization; Y. H. performed the cytotoxicity assay; X. M. and P. D. performed the SARS-CoV-2 immunofluorescence assay and plaque assay under the guidance of Y. X. B. H. and B. T. performed the initial antiviral assay with SARS-CoV-2; J .A. T. performed the native mass spectrometry experiments with the guidance from M. T. M.; J. W. and Y. C. secured funding and supervised the study; J. W., Y.C., and M.S. wrote the manuscript with the input from others.
Corresponding authors: Jun Wang, Tel: 520-626-1366, Fax: 520-626-0749, ude.anozira.ycamrahp@gnawnuj, Yu Chen, Tel: 813-974-7809, ude.fsu@1nehcy
It is made available under a CC-BY-NC 4.0 International license.

Footnotes

DATA AVAILABILITY. The drug-bound complex structures for SARS-CoV-2 M have been deposited in the Protein Data Bank with accession numbers of 6XA4 (SARS-CoV-2 HM + Calpain inhibitor II), 6XFN (SARS-CoV-2 HM + Calpain inhibitor XII), 6XBG (SARS-CoV-2 HM + UAWJ246), 6XBH (SARS-CoV-2 HM + UAWJ247), and 6XBI (SARS-CoV-2 HM + UAWJ248).

ADDITIONAL INFORMATION

Supplementary information accompanies this paper at

Competing interests

The authors declare no competing interests.

Footnotes

REFERENCES

REFERENCES

References

  • 1. Liu C. et al. Research and Development on Therapeutic Agents and Vaccines for COVID-19 and Related Human Coronavirus Diseases. ACS Cent Sci6, 315–331, doi:10.1021/acscentsci.0c00272 (2020). ] [
  • 2. Pillaiyar T., Meenakshisundaram S&amp; Manickam M. Recent discovery and development of inhibitors targeting coronaviruses. Drug Discov Today25, 668–688, doi:10.1016/j.drudis.2020.01.015 (2020). ] [[Google Scholar]
  • 3. Wang M. et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res30, 269–271, doi:10.1038/s41422-020-0282-0 (2020). ] [
  • 4. Eastman RT. et al. Remdesivir: A Review of Its Discovery and Development Leading to Emergency Use Authorization for Treatment of COVID-19. ACS Cent Sci6, 672–683, doi:10.1021/acscentsci.0c00489 (2020). ] [[Google Scholar]
  • 5. Sheahan TP. et al. Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses. Science Transl Med9, eaal3653, doi:ARTN eaal3653 10.1126/scitranslmed.aal3653 (2017). ] [[Google Scholar]
  • 6. de Wit E. et al. Prophylactic and therapeutic remdesivir (GS-5734) treatment in the rhesus macaque model of MERS-CoV infection. Proc Natl Acad Sci U S A117, 6771–6776, doi:10.1073/pnas.1922083117 (2020). ] [
  • 7. Sheahan TP. et al. Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV. Nat Commun11, 222, doi:10.1038/s41467-019-13940-6 (2020). ] [[Google Scholar]
  • 8. Wang Y., Anirudhan V., Du R., Cui Q&amp; Rong L. RNA-dependent RNA Polymerase of SARS-CoV-2 as a Therapeutic Target. J Med Virol, doi:10.1002/jmv.26264 (2020). [] [[PubMed][Google Scholar]
  • 9. Sheahan TP. et al. An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice. Sci Transl Med12, eabb5883, doi:10.1126/scitranslmed.abb5883 (2020). ] [[Google Scholar]
  • 10. Xia S. et al. Inhibition of SARS-CoV-2 (previously 2019-nCoV) infection by a highly potent pan-coronavirus fusion inhibitor targeting its spike protein that harbors a high capacity to mediate membrane fusion. Cell Res30, 343–355, doi:10.1038/s41422-020-0305-x (2020). ] [
  • 11. Xia S. et al. A pan-coronavirus fusion inhibitor targeting the HR1 domain of human coronavirus spike. Sci Adv5, eaav4580, doi:10.1126/sciadv.aav4580 (2019). ] [
  • 12. Pillaiyar T., Manickam M., Namasivayam V., Hayashi Y. &amp; Jung S. H. An Overview of Severe Acute Respiratory Syndrome-Coronavirus (SARS-CoV) 3CL Protease Inhibitors: Peptidomimetics and Small Molecule Chemotherapy. J Med Chem59, 6595–6628, doi:10.1021/acs.jmedchem.5b01461 (2016). ] [
  • 13. Rut W. et al. Substrate specificity profiling of SARS-CoV-2 M protease provides basis for anti-COVID-19 drug design. bioRxiv, 2020.2003.2007.981928, doi:10.1101/2020.03.07.981928 (2020). [[PubMed]
  • 14. Ullrich S&amp; Nitsche C. The SARS-CoV-2 main protease as drug target. Bioorg Med Chem Lett30, 127377, doi:10.1016/j.bmcl.2020.127377 (2020). ] [[Google Scholar]
  • 15. Ma C. et al. Boceprevir, GC-376, and calpain inhibitors II, XII inhibit SARS-CoV-2 viral replication by targeting the viral main protease. Cell Res, doi:10.1038/s41422-020-0356-z (2020). ] [
  • 16. Jin Z. et al. Structure of M(pro) from COVID-19 virus and discovery of its inhibitors. Nature582, 289–293, doi:10.1038/s41586-020-2223-y (2020). [] [[PubMed]
  • 17. Dai W. et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science368, 1331–1335, doi:10.1126/science.abb4489 (2020). ] [
  • 18. Zhang L. et al. Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science368, 409–412, doi:10.1126/science.abb3405 (2020). ] [
  • 19. Sasaki T. et al. Inhibitory effect of di- and tripeptidyl aldehydes on calpains and cathepsins. J Enzyme Inhib3, 195–201, doi:10.3109/14756369009035837 (1990). [] [[PubMed]
  • 20. Shang J. et al. Cell entry mechanisms of SARS-CoV-2. Proc Natl Acad Sci U S A117, 11727–11734, doi:10.1073/pnas.2003138117 (2020). ] [
  • 21. Hoffmann M. et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell181, 271–280 e278, doi:10.1016/j.cell.2020.02.052 (2020). ] [
  • 22. Liu T., Luo S., Libby P. &amp; Shi G. P. Cathepsin L-selective inhibitors: A potentially promising treatment for COVID-19 patients. Pharmacol Ther213, 107587, doi:10.1016/j.pharmthera.2020.107587 (2020). ] [
  • 23. Dana D. &amp; Pathak S. K. A Review of Small Molecule Inhibitors and Functional Probes of Human Cathepsin L. Molecules25, 698, doi:10.3390/molecules25030698 (2020). ] [
  • 24. Choe Y. et al. Substrate profiling of cysteine proteases using a combinatorial peptide library identifies functionally unique specificities. J Biol Chem281, 12824–12832, doi:10.1074/jbc.M513331200 (2006). [] [[PubMed]
  • 25. Ou X. et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun11, 1620, doi:10.1038/s41467-020-15562-9 (2020). ] [
  • 26. Xia B&amp; Kang X. Activation and maturation of SARS-CoV main protease. Protein &amp; Cell2, 282–290, doi:10.1007/s13238-011-1034-1 (2011). ] [[Google Scholar]
  • 27. Ye G. et al. Structural Basis for Inhibiting Porcine Epidemic Diarrhea Virus Replication with the 3C-Like Protease Inhibitor GC376. Viruses12, 240, doi:10.3390/v12020240 (2020). ] [
  • 28. Chuck CP. et al. Profiling of substrate specificity of SARS-CoV 3CL. PLoS One5, e13197, doi:10.1371/journal.pone.0013197 (2010). ] [[Google Scholar]
  • 29. Muramatsu T. et al. SARS-CoV 3CL protease cleaves its C-terminal autoprocessing site by novel subsite cooperativity. Proc Natl Acad Sci U S A113, 12997–13002 (2016).
  • 30. Yang S. et al. Synthesis, crystal structure, structure-activity relationships, and antiviral activity of a potent SARS coronavirus 3CL protease inhibitor. J Med Chem49, 4971–4980, doi:10.1021/jm0603926 (2006). [] [[PubMed]
  • 31. Shie JJ. et al. Inhibition of the severe acute respiratory syndrome 3CL protease by peptidomimetic alpha,beta-unsaturated esters. Bioorg Med Chem13, 5240–5252, doi:10.1016/j.bmc.2005.05.065 (2005). ] [[Google Scholar]
  • 32. Zhang L. et al. alpha-Ketoamides as Broad-Spectrum Inhibitors of Coronavirus and Enterovirus Replication: Structure-Based Design, Synthesis, and Activity Assessment. J Med Chem63, 4562–4578, doi:10.1021/acs.jmedchem.9b01828 (2020). ] [
  • 33. Zhu L. et al. Peptide aldehyde inhibitors challenge the substrate specificity of the SARScoronavirus main protease. Antiviral Res92, 204–212, doi:10.1016/j.antiviral.2011.08.001 (2011). ] [
  • 34. Galasiti Kankanamalage AC. et al. Structure-guided design of potent and permeable inhibitors of MERS coronavirus 3CL protease that utilize a piperidine moiety as a novel design element. Eur J Med Chem150, 334–346, doi:10.1016/j.ejmech.2018.03.004 (2018). ] [[Google Scholar]
  • 35. Galasiti Kankanamalage AC. et al. Structure-guided design and optimization of dipeptidyl inhibitors of norovirus 3CL protease. Structure-activity relationships and biochemical, X-ray crystallographic, cell-based, and in vivo studies. J Med Chem58, 3144–3155, doi:10.1021/jm5019934 (2015). ] [[Google Scholar]
  • 36. Mandadapu SR. et al. Inhibition of norovirus 3CL protease by bisulfite adducts of transition state inhibitors. Bioorg Med Chem Lett23, 62–65, doi:10.1016/j.bmcl.2012.11.026 (2013). ] [[Google Scholar]
  • 37. Vuong W. et al. Feline coronavirus drug inhibits the main protease of SARS-CoV-2 and blocks virus replication. BioRxiv (2020). [PubMed]
  • 38. Anson BM., A.; Center for Structural Genomics of Infectious Diseases. X-ray Structure of SARS-CoV-2 main protease bound to Boceprevir at 1.45 A from 10.2210/pdb6wnp/pdb (2020). [[PubMed][Google Scholar]
  • 39. Agostini ML. et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio9, e00221–18, doi:10.1128/mBio.00221-18 (2018). ] [[Google Scholar]
  • 40. Pedersen NC. et al. Efficacy of a 3C-like protease inhibitor in treating various forms of acquired feline infectious peritonitis. J Feline Med Surg20, 378–392, doi:10.1177/1098612X17729626 (2018). ] [[Google Scholar]
  • 41. Kim Y. et al. Reversal of the Progression of Fatal Coronavirus Infection in Cats by a Broad-Spectrum Coronavirus Protease Inhibitor. PLoS Pathog12, e1005531, doi:10.1371/journal.ppat.1005531 (2016). ] [
  • 42. Cady S. D., Wang J., Wu Y., DeGrado W. F. &amp; Hong M. Specific binding of adamantane drugs and direction of their polar amines in the pore of the influenza M2 transmembrane domain in lipid bilayers and dodecylphosphocholine micelles determined by NMR spectroscopy. J Am Chem Soc133, 4274–4284, doi:10.1021/ja102581n (2011). ] [
  • 43. Marty MT. et al. Bayesian deconvolution of mass and ion mobility spectra: from binary interactions to polydisperse ensembles. Anal Chem87, 4370–4376, doi:10.1021/acs.analchem.5b00140 (2015). ] [[Google Scholar]
  • 44. Repetto G., del Peso A. &amp; Zurita J. L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc3, 1125–1131, doi:10.1038/nprot.2008.75 (2008). [] [[PubMed]
  • 45. Musharrafieh R. et al. Investigation of the Drug Resistance Mechanism of M2-S31N Channel Blockers through Biomolecular Simulations and Viral Passage Experiments. ACS Pharmacol Transl Sci, doi:10.1021/acsptsci.0c00018 (2020). [[PubMed]
  • 46. Maestro VS., Inc.: New York, NY, 2015. [PubMed][Google Scholar]
  • 47. Kaminski G. A., Friesner R. A., Tirado-Rives J. &amp; Jorgensen W. L. Evaluation and reparametrization of the OPLS-AA force field for proteins via comparison with accurate quantum chemical calculations on peptides. J Phys Chem B105, 6474–6487, doi:10.1021/jp003919d (2001). [[PubMed]
  • 48. Jorgensen W. L., Chandrasekhar J., Madura J. D., Impey R. W. &amp; Klein M. L. Comparison of Simple Potential Functions for Simulating Liquid Water. J Chem Phys79, 926–935, doi:Doi 10.1063/1.445869 (1983). [[PubMed]
  • 49. Jorgensen W. L., Maxwell D. S. &amp; Tirado-Rives J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J Am Chem Soc118, 11225–11236, doi:10.1021/ja9621760 (1996). [[PubMed]
  • 50. Shivakumar D. et al. Prediction of Absolute Solvation Free Energies using Molecular Dynamics Free Energy Perturbation and the OPLS Force Field. J Chem Theory Comput6, 1509–1519, doi:10.1021/ct900587b (2010). [] [[PubMed]
  • 51. Darden T., York D&amp; Pedersen L. Particle Mesh Ewald - an N.Log(N) Method for Ewald Sums in Large Systems. J Chem Phys98, 10089–10092, doi:Doi 10.1063/1.464397 (1993). [[PubMed][Google Scholar]
  • 52. Essmann U. et al. A smooth particle mesh Ewald method. J Chem Phys103, 8577–8593, doi:10.1063/1.470117 (1995). [[PubMed]
  • 53. Humphreys D. D., Friesner R. A. &amp; Berne B. J. A Multiple-Time-Step Molecular Dynamics Algorithm for Macromolecules. J Phys Chem98, 6885–6892, doi:10.1021/j100078a035 (1994). [[PubMed]
  • 54. Izaguirre J. A., Catarello D. P., Wozniak J. M. &amp; Skeel R. D. Langevin stabilization of molecular dynamics. J Chem Phys114, 2090–2098, doi:10.1063/1.1332996 (2001). [[PubMed]
  • 55. Feller S. E., Zhang Y., Pastor R. W. &amp; Brooks B. R. Constant pressure molecular dynamics simulation: The Langevin piston method. J Chem Phys103, 4613–4621, doi:10.1063/1.470648 (1995). [[PubMed]
  • 56. Pettersen EF. et al. UCSF Chimera—A visualization system for exploratory research and analysis. J Comput Chem25, 1605–1612, doi:10.1002/jcc.20084 (2004). [] [[PubMed][Google Scholar]
  • 57. Isgro T. P., J. C.; Sotomayor M.; Villa E. VMD NAMD Tutorial. VMD Tutor. 2009. [PubMed]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.