Yeast diversity associated with invasive Dendroctonus valens killing Pinus tabuliformis in China using culturing and molecular methods.
Journal: 2014/November - Microbial Ecology
ISSN: 1432-184X
Abstract:
Bark beetle-associated yeasts are much less studied than filamentous fungi, yet they are also considered to play important roles in beetle nutrition, detoxification, and chemical communication. The red turpentine beetle, Dendroctonus valens, an invasive bark beetle introduced from North America, became one of the most destructive pests in China, having killed more than 10 million Pinus tabuliformis as well as other pine species. No investigation of yeasts associated with this bark beetle in its invaded ranges has been conducted so far. The aim of this study was to assess the diversity of yeast communities in different microhabitats and during different developmental stages of Den. valens in China using culturing and denaturing gradient gel electrophoresis (DGGE) approaches and to compare the yeast flora between China and the USA. The yeast identity was confirmed by sequencing the D1/D2 domain of LSU ribosomal DNA (rDNA). In total, 21 species (13 ascomycetes and eight basidiomycetes) were detected by culturing method, and 12 species (11 ascomycetes and one basidiomycetes) were detected by molecular methods from China. The most frequent five species in China were Candida piceae (Ogataea clade), Cyberlindnera americana, Candida oregonensis (Metschnikowia clade), Candida nitratophila (Ogataea clade) and an undescribed Saccharomycopsis sp., detected by both methods. Seven species were exclusively detected by DGGE. Ca. oregonensis (Metschnikowia clade) was the most frequently detected species by DGGE method. Eight species (all were ascomycetes) from the USA were isolated; seven of those were also found in China. We found significant differences in yeast total abundance as well as community composition between different developmental stages and significant differences between the surface and the gut. The frass yeast community was more similar to that of Den. valens surface or larvae than to the community of the gut or adults. Possible functions of the yeast associates are discussed.
Relations:
Citations
(8)
References
(50)
Drugs
(3)
Chemicals
(1)
Organisms
(5)
Processes
(3)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.