Anti-obesity effect of Lactobacillus plantarum CQPC01 by modulating lipid metabolism in high-fat diet-induced C57BL/6 mice
Journal: 2020/October - Journal of Food Biochemistry
Abstract:
Lactic acid bacteria (LAB) are an important group of microorganisms in the food industry. LAB with health benefits are considered natural elements promoting consumer health. The study investigated the anti-obesity effects of Lactobacillus plantarum CQPC01 (LP-CQPC01) on high-fat diet-induced mice. Liver morphology, liver function indexes, lipid indexes, and inflammatory factors in the serum and liver were determined. Expressions of lipid metabolism-related gene were also detected by qPCR. LP-CQPC01 slowed the HFD-induced increase in body weight, decreased the organ indexes, alleviated hepatic lipid accumulation, and inhibited the increased adipose cell volume. LP-CQPC01 decreased lipid levels of serum and liver, and the contents of pro-inflammatory factors, and increased the IL-4 and IL-10 contents. LP-CQPC01 downregulated the expressions of the C/EBP-α and PPARγ mRNA and upregulated CYP7A1, CPT1, LPL, CAT, SOD1, and SOD2 mRNA. Our results indicated that LP-CQPC01 is a potential probiotic for preventing or alleviating high-energy intake-related lipid conditions. PRACTICAL APPLICATIONS: Obesity is a factor of a variety of cardiovascular diseases. Therefore, it is necessary to suppress the occurrence of fat accumulation in time. This study investigated the effect of LP-CQPC01 on lipid regulation in mice fed a high-fat diet (HFD) and clarified the mechanism of strain to alleviate obesity by enhancing the decomposition of cholesterol and detoxification of fat. LP-CQPC01 reduced fat accumulation without oxidative damage, and was confirmed by the attenuated pathological changes of liver. This research can serve as a significant reference for future research, prevention, and treatment of high-energy intake-related lipid conditions, and the development of functional foods with anti-obesity activity.
Keywords: Lactobacillus plantarum; gene expression; lipid metabolism; obesity.
Relations:
Diseases
(1)
Conditions
(1)
Chemicals
(1)
Organisms
(2)
Processes
(7)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.