In Silico Identification of Potential Inhibitors of ADP-Ribose Phosphatase of SARS-CoV-2 nsP3 by Combining E-Pharmacophore- and Receptor-Based Virtual Screening of Database
Journal: 2020/August - ChemistrySelect
Abstract:
The recently emerged 2019 Novel Coronavirus (SARS-CoV-2) and associated COVID-19 disease cause serious or even fatal respiratory tract infection. Observing the spread, illness and death caused by COVID-19, the World Health Organization (WHO) declared COVID-19 a pandemic. To date, there is no approved therapeutics or effective treatment available to combat the outbreak. This urgent situation is pressing the world to respond with development of novel vaccine or a small molecule therapeutics for SARS-CoV-2. In line with these efforts, the structure of several proteins of SARS-CoV-2 has been rapidly resolved and made publicly available to facilitate global efforts to develop novel drug candidates. In this paper, we aim to find out the small molecule inhibitors for ADP-ribose phosphatase of SARS-CoV-2. In order to identify potential inhibitors, we applied sequential E-pharmacophore and structure-based virtual screening (VS) of MolPort database containing 113687 number of commercially available natural compounds using Glide module. Six potential inhibitors having admirable XP glide score range from -11.009 to -14.684 kcal/mol and good binding affinity towards active sites were identified. All the molecules are commercially available for further characterization and development by scientific community. The in vitro activity of selected inhibitors can be done easily which will provide useful information for clinical treatment of novel coronavirus pneumonia.
Keywords: Drug design; MolPort database; Molecular docking; SARS-CoV-2; Virtual screening.
Relations:
Content
Citations
(2)
References
(34)
Diseases
(2)
Chemicals
(1)
Organisms
(2)
Processes
(1)
Similar articles
Articles by the same authors
Discussion board
ChemistrySelect 5(30): 9388-9398

In Silico Identification of Potential Inhibitors of ADP‐Ribose Phosphatase of SARS‐CoV‐2 nsP3 by Combining E‐Pharmacophore‐ and Receptor‐Based Virtual Screening of Database

Supporting information

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Supplementary

Department of Chemistry, M.B.B. College, Agartala, Tripura 799004 India,
Department of Forestry and Biodiversity, Tripura University, Agartala, Tripura 799022 India,
Department of Chemistry, Women's College, Agartala, Tripura 799001 India,
Dr. Pradip Debnath, Email: moc.liamg@87mehcpidarp.
Contributor Information.
Corresponding author.
Received 2020 Apr 6; Accepted 2020 Jul 24.
This article is being made freely available through PubMed Central as part of the COVID-19 public health emergency response. It can be used for unrestricted research re-use and analysis in any form or by any means with acknowledgement of the original source, for the duration of the public health emergency.

Abstract

The recently emerged 2019 Novel Coronavirus (SARS‐CoV‐2) and associated COVID‐19 disease cause serious or even fatal respiratory tract infection. Observing the spread, illness and death caused by COVID‐19, the World Health Organization (WHO) declared COVID‐19 a pandemic. To date, there is no approved therapeutics or effective treatment available to combat the outbreak. This urgent situation is pressing the world to respond with development of novel vaccine or a small molecule therapeutics for SARS‐CoV‐2. In line with these efforts, the structure of several proteins of SARS‐CoV‐2 has been rapidly resolved and made publicly available to facilitate global efforts to develop novel drug candidates. In this paper, we aim to find out the small molecule inhibitors for ADP‐ribose phosphatase of SARS‐CoV‐2. In order to identify potential inhibitors, we applied sequential E‐pharmacophore and structure‐based virtual screening (VS) of MolPort database containing 113687 number of commercially available natural compounds using Glide module. Six potential inhibitors having admirable XP glide score range from −11.009 to −14.684 kcal/mol and good binding affinity towards active sites were identified. All the molecules are commercially available for further characterization and development by scientific community. The in vitro activity of selected inhibitors can be done easily which will provide useful information for clinical treatment of novel coronavirus pneumonia.

Keywords: Drug design, Molecular docking, MolPort database, SARS-CoV-2, Virtual screening
Abstract

Abstract

The sequential E‐pharmacophore and structure based virtual screening of MolPort database containing 113687 nos of natural compounds has been performed using Glide. Six potential inhibitors of ADP‐ribose‐1‐phosphate of SARS‐CoV‐2 nsP3 having admirable XP glide score range from −11.009 to −14.684 and good binding affinity towards active site of protein were identified. The inhibitors reported here are commercially available for further characterization and development by scientific community.

An external file that holds a picture, illustration, etc.
Object name is SLCT-5-9388-g015.jpg

Abstract

As a service to our authors and readers, this journal provides supporting information supplied by the authors. Such materials are peer reviewed and may be re‐organized for online delivery, but are not copy‐edited or typeset. Technical support issues arising from supporting information (other than missing files) should be addressed to the authors.

Supplementary

Click here for additional data file.(138K, pdf)
Click here for additional data file.(138K, pdf)

Notes

P. Debnath, B. Debnath, S. Bhaumik, S. Debnath, ChemistrySelect2020, 5, 9388.

Notes

Contributor Information

Dr. Pradip Debnath, Email: moc.liamg@87mehcpidarp.

Dr. Sudhan Debnath, Email: moc.liamg@htanbedscb.

Contributor Information

References

  • 1. Pillaiyar T., Meenakshisundaram S., Manickam M., Drug Discovery Today 2020, 25, 668–688.
  • 2. Chen Y., Liu Q., Guo D., J. Med. Virol. 2020, 92, 418–423.
  • 3. CDC. 2018, https://www.cdc.gov/sars/about/fs-sars.html
  • 4.
  • 5. WHO. 2018, http://www.who.int/emergencies/mers-cov/en/;
  • 6. Mohd H. A., Al-Tawfiq J. A., Memish Z. A., Virol. J. 2016, 13, 87-93.
  • 7. Wu F., Zhao S., Yu B., Chen Y. M., Wang W., Song Z. G., Hu Y., Tao Z. W., Tian J. H., Pei Y. Y., Yuan M. L., Zhang Y. L., Dai F. H., Liu Y., Wang Q. M., Zheng J. J., Xu L., Holmes E. C., Zhang Y. Z., Nature 2020, 579, 265–269.
  • 8. Israeli E., Harefuah 2020, 159, 70–71. [[PubMed]
  • 9.
  • 10. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y., Zhang L., Fan G., Xu J., Gu X., Cheng Z., Yu T., Xia J., Wei Y., Wu W., Xie X., Yin W., Li H., Liu M., Xiao Y., Gao H., Guo L., Xie J., Wang G., Jiang R., Gao Z., Jin Q., Wang J., Cao B., Lancet 2020, 395, 497–506;
  • 11. Yang X., Yu Y., Xu J., Shu H., Xia J., Liu H., Wu Y., Zhang L., Yu Z., Fang M., Yu T., Wang Y., Pan S., Zou X., Yuan S., Shang Y., Lancet Respir. Med. 2020, 8, 475–481.
  • 12. Zhou P., Yang X. L., Wang X. G., Hu B., Zhang L., Zhang W., Si H. R., Zhu Y., Li B., Huang C. L., Chen H. D., Chen J., Luo Y., Guo H., Jiang R. D., Liu M. Q., Chen Y., Shen X. R., Wang X., Zheng X. S., Zhao K., Chen Q. J., Deng F., Liu L. L., Yan B., Zhan F. X., Wang Y. Y., Xiao G. F., Shi Z. L., Nature 2020, 579, 270–273.
  • 13. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J., Zhao X., Huang B., Shi W., Lu R., Niu P., Zhan F., Ma X., Wang D., Xu W., Wu G., Gao GF., Tan W., N. Engl. J. Med. 2020. , 382, 727–733. [Google Scholar]
  • 14. Chen N., Zhou M., Dong X., Qu J., Gong F., Han Y., Qiu Y., Wang J., Liu Y., Wei Y., Xia J., Yu T., Zhang X., Zhang L., Lancet 2020, 395, 507–513.
  • 15.
  • 16. Jiang F., Deng L., Zhang L., Cai Y., Cheung CW., Xia Z., J. Gen. Intern. Med. 2020, 35, 1545–1549; [Google Scholar]
  • 17. Wang C., Horby P. W., Hayden F. G., Gao G. F., Lancet 2020, 395, 470–473.
  • 18. World Health Organisation, Novel Coronavirus (2019-nCoV) situation reportshttps://www.who.int/emergencies/diseases/novel-coronavirus-2019/situation-reports/.
  • 19. WHO, International Health Regulations Emergency Committee on novel coronavirus in China.https://www.who.int/newsroom/events/detail/2020/01/30/defaultcalendar/international-health-regulations-emergency-committee-on-novel-coronavirus-in-china.
  • 20. Xu Z., Peng C., Shi Y., Zhu Z., Mu K., Wang X., Zhu W., bioRxiv 2020. doi: 10.1101/2020.01.27.921627. [PubMed]
  • 21. Ton AT., Gentile F., Hsing M., Ban F., Cherkasov A., Mol. Inf. 2020. doi:10.1002/minf.202000028. [PubMed][Google Scholar]
  • 22. Zhang H., Saravanan K. M., Yang Y., Hossain M. T., Li J., Ren X., Pan Y., Wei Y., Interdiscip. Sci. 2020, 1–9. [PubMed]
  • 23. Zhang D. H., Wu K. L., Zhang X., Deng S. Q., Peng B., J. Integr. Med. 2020, 18, 152–158.
  • 24. Zumla A., Hui D. S., Azhar E. I., Memish Z. A., Maeurer M., Lancet 2020, 395, e35-e36.
  • 25. Guangdi L., Clercq ED., Nat. Rev. Drug Discovery 2020, 19, 149–150. [[PubMed][Google Scholar]
  • 26. Sanders J. M., Monogue M. L., Jodlowski T. Z., JAMA, 2020. doi:10.1001/jama.2020.6019. [PubMed]
  • 27. Liu W., Zhu HL., Duan Y., Curr. Top. Med. Chem. 2020, 20, 603–605. [[PubMed][Google Scholar]
  • 28. Li Y., Zhang J., Wang N., Li H., Shi Y., Guo G., Liu K., Zeng H., Zou Q., bioRxiv. 2020, doi: https://doi.org/10.1101/2020.01.28.922922. [PubMed]
  • 29. Zhou Y., Hu Y., Shen J., Huang Y., Martin W., Cheng F., Cell Discov. 2020, 6, 14. https://doi.org/10.1038/s41421-020-0153-3.
  • 30. Bosch B. J., van der Zee R., de Haan C. A., Rottier P. J., J. Virol. 2003, 77, 8801–8811.
  • 31. Li W., Moore M. J., Vasilieva N., Sui J., Wong S. K., Berne M. A., Somasundaran M., Sullivan J. L., Luzuriaga K., Greenough T. C., Choe H., Farzan M., Nature 2003, 426, 450–454.
  • 32. Baez-Santos Y. M., John S. E. S., Mesecar A. D., Antiviral Res. 2014, 115, 21–38.
  • 33. Fehr AR., Jankevicius G., Ahel I., Perlman S., Trends Microbiol. 2018, 26, 598–610. [Google Scholar]
  • 34. Imbert I., Snijder E. J., Dimitrova M., Guillemot J. C., Lecine P., Canard B., Virus Res. 2008, 133, 136–148.
  • 35. X. Liu, B. Zhang, Z. Jin, H. Yang, Z. Rao, 2020, PDB id: 6LU7. doi: 10.2210/pdb6LU7/pd.
  • 36. X. Wang, J. Lan, J. Ge, J. Yu, S. Shan, 2020, doi: 10.2210/pdb6 M0 J/pdb
  • 37. J. Shang, G. Ye, K. Shi, Y. S. Wan, H. Aihara, F. Li, 2020, doi: 10.2210/pdb6VW1/pdb
  • 38. Y. Kim, R. Jedrzejczak, N. Maltseva, M. Endres, A. Godzik, K. Michalska, A. Joachimiak. 2020, doi: 10.2210/pdb6VWW/pdb
  • 39. L. Zhang, X. Sun, R. Hilgenfeld, 2020, doi: 10.2210/pdb6Y2E/pdb.
  • 40. K. Michalska, Y. Kim, R. Jedrzejczak, N. Maltseva, M. Endres, A. Mececar, A. Joachimiak, 2020, doi: 10.2210/pdb6 W02/pdb
  • 41. Saikatendu K. S., Joseph J. S., Subramanian V., Clayton T., Griffith M., Moy K., Velasquez J., Neuman B. W., Buchmeier M. J., Stevens R. C., Kuhn P., Structure 2005, 13, 1665–1675.
  • 42.
  • 43. Zhang L., Lin D., Sun X., Curth U., Drosten C., Sauerhering L., Becker S., Rox K., Hilgenfeld R., Science 2020, 368, 409–412;
  • 44. Khan SA., Zia K., Ashraf S., Uddin R., Ul-Haq Z., J. Biomol. Struct. Dyn. 2020, 1–10; [[PubMed][Google Scholar]
  • 45. Muralidharan N., Sakthivel R., Velmurugan D., Gromiha MM., J. Biomol. Struct. Dyn. 2020, 1–6; [[PubMed][Google Scholar]
  • 46. Paasche A., Zipper A., Schäfer S., Ziebuhr J., Schirmeister T., Engels B., Biochemistry 2014, 53, 5930–5946. [[PubMed]
  • 47. Fischer A., Sellner M., Neranjan S., Lill MA., Smiesko M., ChemRxiv. 2020, Preprint. https://doi.org/10.26434/chemrxiv.11923239.v1. [PubMed][Google Scholar]
  • 48. Zhu Z., Wang X., Yang Y., Zhang Z., Mu K., Shi Y., Peng C., Xu Z., Zhu W., ChemRxiv 2020, https://doi.org/10.26434/chemrxiv.11959323.v1. [PubMed]
  • 49. Wu C., Liu Y., Yang Y., Zhang P., Zhong W., Wang Y., Wang Q., Xu Y., Li M., Li X., Zheng M., Chen L., Li H., Acta Pharm. Sin. B 2020, 10, 766–788.
  • 50. Halgren T. A., Murphy R. B., Friesner R. A., Beard H. S., Frye L. L., Pollard W. T., Banks J. L., J. Med. Chem. 2004, 47, 1750–1759. [[PubMed]
  • 51. Friesner R. A., Murphy R. B., Repasky M. P., Frye L. L., Greenwood J. R., Halgren T. A., Sanschagrin P. C., Mainz D. T., J. Med. Chem. 2006, 49, 6177–6196. [[PubMed]
  • 52. Friesner R. A., Banks J. L., Murphy R. B., Halgren T. A., Klicic J. J., Mainz D. T., Repasky M. P., Knoll E. H., Shaw D. E., Shelley M., Perry J. K., Francis P., Shenkin P. S., J. Med. Chem. 2004, 47, 1739–1749. [[PubMed]
  • 53. Schrödinger Release 2020-4: Maestro, Schrödinger, LLC, New York, NY, 2020
  • 54. Salam NK., Nuti R., Sherman W., J. Chem. Inf. Model. 2009, 49, 2356–2368. [[PubMed][Google Scholar]
  • 55. QikProp, Schrödinger, LLC, New York, NY, 2020.
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.