Failure of superoxide dismutase and catalase to alter size of infarction in conscious dogs after 3 hours of occlusion followed by reperfusion.
Journal: 1986/May - Circulation
ISSN: 0009-7322
PUBMED: 3698229
Abstract:
Superoxide dismutase (SOD) and catalase (CAT), enzymes that degrade superoxide anion and hydrogen peroxide, respectively, reduce size of infarction in anesthetized, open-chest dogs subjected to coronary occlusion followed by reperfusion. To evaluate potential protective effects of these enzymes in conscious animals, three groups of dogs were instrumented at sterile surgery with a hydraulic occluder on the left circumflex (LCX) coronary artery, sonomicrometers to measure regional wall thickness, and catheters to monitor arterial and left ventricular pressures. Ten to 14 days after surgery, the animals were sedated with morphine sulfate (0.5 mg/kg). The LCX artery was occluded for 3 hr by inflation of the hydraulic cuff. Infusions of SOD (n = 7), CAT (n = 6), or saline (control group, n = 7) were begun 15 min before reperfusion and lasted for 45 min of reperfusion. The doses of SOD and CAT were 5 mg/kg, dissolved in 60 ml of saline, and infused at a rate of 1 ml/min. Myocardial blood flow was measured with tracer-labeled microspheres (15 micron diameter) before occlusion, after 5 to 10 min of occlusion, after 150 min of occlusion, and 5 to 10 min after reperfusion. Size of infarction was measured 24 hr later by dual-perfusion staining with Evans blue and triphenyl tetrazolium. Size of infarction (expressed as a percentage of area at risk) did not differ significantly among the three groups: control, 32 +/- 17% (mean +/- SD); SOD, 38 +/- 17%; CAT, 27 +/- 17%. Hemodynamic parameters and myocardial blood flows (measured before infusion of any agents) were not significantly different among the three groups. Serum SOD levels in SOD-treated dogs were 19 +/- 2 micrograms/ml at the onset of reperfusion and 29 +/- 3 micrograms/ml at the end of the infusion. Blood assays collected after infusion showed a monoexponential decay of SOD levels with a half-life of 22 +/- 6 min. We conclude that myocardial protection by SOD or CAT is model dependent. In conscious dogs subjected to 3 hr of coronary occlusion followed by reperfusion, SOD and CAT failed to alter size of infarction.
Relations:
Citations
(30)
Grants
(1)
Diseases
(2)
Drugs
(1)
Organisms
(2)
Processes
(3)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.