Antibacterial activity and composition of essential oils from Pelargonium graveolens L'Her and Vitex agnus-castus L.
Journal: 2012/December - Iranian Journal of Microbiology
ISSN: 2008-4447
PUBMED: 23205247
Abstract:
OBJECTIVE
Essential oils are volatile compounds that have been used since Middle Ages as antimicrobial, anti-inflammatory, sedative, local anesthetic and food flavoring agents. In the current study, essential oils of Pelargonium graveolens L'Her and Vitex agnus-castus L. were analyzed for their antibacterial activities.
METHODS
The chemical compositions of essential oils were characterized by GC-MS. Disc diffusion method was used to study antimicrobial activity.
CONCLUSIONS
Inhibition zones showed that the essential oils of the two plants were active against all of the studied bacteria (except Listeria monocytogenes). The susceptibility of the strains changed with the dilution of essential oils in DMSO. The pure essential oils showed the most extensive inhibition zones and they were very effective antimicrobial compounds compared to chloramphenicol and amoxicillin. The most susceptible strain against these two essential oils was Staphylococcus aureus. It seems that β-citronellol is a prominent part of P. graveolens volatile oil and caryophyllene oxide is a famous and important part of V. agnus-castus volatile oil and their probable synergistic effect with other constituents are responsible for the antibacterial effects of these oils. However further studies must be performed to confirm the safety of these oils for use as antimicrobial agents and natural preservatives in different products.
Relations:
Content
Citations
(8)
References
(19)
Drugs
(6)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Iranian Journal of Microbiology. Nov/30/2012; 4(4): 171-176

Antibacterial activity and composition of essential oils from Pelargonium graveolens L'Her and Vitex agnus-castus L

Abstract

Background and Objectives

Essential oils are volatile compounds that have been used since Middle Ages as antimicrobial, anti-inflammatory, sedative, local anesthetic and food flavoring agents.

In the current study, essential oils of Pelargonium graveolens L'Her and Vitex agnus-castus L. were analyzed for their antibacterial activities.

Materials and Methods

The chemical compositions of essential oils were characterized by GC-MS. Disc diffusion method was used to study antimicrobial activity.

Results and Conclusion

Inhibition zones showed that the essential oils of the two plants were active against all of the studied bacteria (except Listeria monocytogenes). The susceptibility of the strains changed with the dilution of essential oils in DMSO. The pure essential oils showed the most extensive inhibition zones and they were very effective antimicrobial compounds compared to chloramphenicol and amoxicillin. The most susceptible strain against these two essential oils was Staphylococcus aureus. It seems that β-citronellol is a prominent part of P. graveolens volatile oil and caryophyllene oxide is a famous and important part of V. agnus-castus volatile oil and their probable synergistic effect with other constituents are responsible for the antibacterial effects of these oils. However further studies must be performed to confirm the safety of these oils for use as antimicrobial agents and natural preservatives in different products.

INTRODUCTION

Essential oils are volatile, natural, complex compounds that are produced by plants as secondary metabolites for protection against bacteria, viruses, fungi and pests (1). They also have an important role in dispersion of pollens and seeds by attracting some insects. In Middle Ages essential oils were used for preservation of foods and as flavoring, antimicrobial, analgesic, sedative, anti-inflammatory, spasmolytic and locally anesthetic remedies (24). But characterizing these properties in laboratory dated back to the early 1900s. At present, about 3000 essential oils are known and 300 of them are used commercially in different industries such as pharmaceutical, agronomic, food, sanitary, cosmetic and perfume (5). Today, antioxidant, antitumor and antiviral, antifungal and antibacterial activity of essential oils and their constituents is widely studied (614). In the other hand, Antimicrobial resistance (AMR) is now a global concern. Resistant organisms such as bacteria, viruses and some parasites are able to live in the presence of antimicrobial medicines, such as antibiotics, antivirals, and antimalarials, so that standard treatments become ineffective and infections can spread to others (15). AMR is the result of misuse of antimicrobial medicines and develops when a microorganism mutates or acquires a resistance gene. So finding new antimicrobial agent is one of the fields that many researchers are interested in. Among these studies may be the most focus is on natural antimicrobial agent such as essential oils.

The Pelargonium (Geraniaceae family) and Vitex (Verbenaceae family) genera are two important sources of foods, medicines and cosmetics in the world and Iran. They are also sources of distilled volatile oils (1620). These genera have been found to possess significant pharmacological and biological activities, including antioxidant, anti-neuroinflammatory, anti-influenza, anticancer, antimicrobial and antifungal activity (16, 17, 2023).

Pelargonium graveolens L'Her and Vitex agnus-castus L. are the most important species of their genera and used in several foods, remedies and cosmeceuticals (1618, 20, 21, 24).

P. graveolens aerial parts are used in folk medicine of Iran and the world as a food and tea drinks additive and for relieving of some gastrointestinal, topical, dental and cardiovascular disorders (17, 18, 20, 24). There are some reports on the phytochemical analysis of the plant found in the literature. Some scientific studies on P. graveolens showed the presence of constituents belonging mainly to the groups of essential oils, phenolics and flavonoid (17, 2022, 2528). The flavor composition in Pelargonium has been studied by various authors (20, 22, 2528).

V. agnus-castus fruits have been used in food as flavor and spice component and in Iranian traditional and folk medicine as a hormone-like remedy for relieving of menstrual problems and as a mild tranquilizer and digestive (16, 18). Phytochemical studies on V. agnus-castus revealed volatile oil, flavonoids, coumarins, terpenes were the main components of the plant (16, 23, 24, 29). Volatile oil constituents of those herbs are responsible for their major pharmacological activities (16, 17, 21).

Although the chemical compositions of the volatile oils of these plants are well studied, to our best knowledge no research has so far been conducted on these Persian sources and their antibacterial effects. The goal of this investigation was to determine whether the volatile oils of P. graveolens and V. agnus-castus possess antibacterial activities against some common pathogen and food-borne bacterial pathogens.

MATERIALS AND METHODS

Plant materials

The aerial parts of P. graveolens were collected during the flowering period from cultivated plants around Kashan in Isfahan province, centre of Iran in June 2001 and the seeds of V. agnus-castus had been collected from Mazandaran province, north of Iran in July 2001. The species were identified in herbarium department of Science and Research Branch, Tehran Islamic Azad University, Tehran, Iran by Dr. Iraj Mehregan. Voucher specimens of the plants were deposited at the herbarium department in our school.

Volatile oils isolation

The powdered air-dried plant parts were subjected to hydro-distillation in a Clevenger-type apparatus separately until there was no significant increase in the volume of the oil collected for 3 h. The volatile oils were dried over anhydrous sodium sulfate and stored at 4 °C in the dark for analysis and further antibacterial studies (30, 31).

GC-MS

GC/MS analysis was performed on a Hewlett Packard 5972A mass selective detector coupled with a Hewlett Packard 6890 gas chromatograph, equipped with a cross-linked 5% PH ME siloxane HP-5MS capillary column (30m×0.25 mm, film thickness 0.25 µm).

The GC operating conditions were as follows: carrier gas, helium with a flow rate of 2 mL/min; column temperature, 60°-275°C at 4°C/min; injector and detector temperatures, 280°C; volume injected, 0.1 µL of the oil; split ratio, 1:25.

The MS operating parameters were as follows: ionization potential, 70 ev; ion source temperature, 200°C; resolution, 1000.

Identification of components in the oil was based on GC retention indices relative to n-alkanes and computer matching with the Wiley 275.L library, as well as by comparison of the fragmentation patterns of the mass spectra with those reported in the literature (3235).

Microorganisms

The antibacterial activity of essential oils was investigated against six bacterial species. Test organisms included Listeria monocytogenes (PTCC 1297), Salmonella enteritidis (PTCC 1091), Pseudomonas aeruginosa (PTCC 1074), Escherichia coli (PTCC 1330), Staphylococcus aureus (PTCC 1112) and Bacillus subtilis (PTCC 1023). Lyophilized microorganisms (MOs) were sub-cultured in Muller-Hinton broth (MHB, Oxoid, UK) then plated onto Muller-Hinton agar (MHA, Oxoid, UK) as working cultures. The bacterial suspension was prepared in normal saline by picking colonies from an overnight plate. Also, all cultures were maintained at -70 °C in 20% glycerol for further analysis.

Antibacterial activity assay

The antimicrobial effect of essential oils is usually determined by an initial in vitro screening method such as disc diffusion method where a filter disc is impregnated with the essential oils and placed on the surface of inoculated agar plates. In current study this method was also applied. Muller-Hinton agar plates were prepared according to bi-layer method. The base layer was 30 ml of MHA and the seed layer was consisted of 9 ml MHA and 1 ml microbial suspension (108cfu/ml) to achieve final concentration of 107cfu/ml. The mixture of seed layer was uniformly spread on base layer. The concentration of microbial suspension was determined spectrophotometrically (580 nm, 0.2 OD).

Sterile paper discs (6.4 mm diameter, Padtan, Iran) were impregnated with 15 µl of neat essential oils and two different concentrations (1/2, 1/4 prepared by dilution in DMSO). The discs were dried after incubation at 37 °C for 24 h. Every six discs were placed on a MHA plates surfaces. Negative controls were prepared using 15 µl of DMSO. Amoxicillin (25µg/disc) and chloramphenicol (30µg/disc) were used as positive control to determine the sensitivity of microbial strains and DMSO as negative control. After pre-incubation (60 min at 4°C), inoculated plates were incubated at 37 °C for 24 h. Antimicrobial activity was evaluated by measuring the inhibition zone on the surface of plates and the results were reported as Mean±SD after three repeats.

RESULTS

The volatile oils obtained after hydro-distillation of the aerial parts of P. graveolens and the seeds of V. agnus-castus gave average yields of 0.8% and 1% (w/v), based on dry weights. The results obtained for the qualitative and quantitative analyses of the oils can be seen in Tables 1 and 2. More than twenty compounds were identified in each volatile oil, accounting for 94.3% and 97.5% of the Pelargonium and Vitex oils.

Table 1

Composition (%) and Retention Indices (RI) of the Essential Oil of Pelargonium graveolens L'Her

NoRIaCompound%b
1935α-pinene1.0
21095linalool5.1
31107cis-rose oxide2.8
41124trans-rose oxide1.1
51151para-menthone2.7
61162isomenthone7.3
71186α-terpineol0.4
81227β-citronellol36.4
91239neral0.4
101255geraniol10.7
111275citronellyl formate12.1
121301geranyl formate2.6
131356citronellyl acetate0.6
141378α-cofaene0.5
151385geranyl acetate1.5
161421β-caryophyllene3.4
171446citronellyl propanoate1.0
181457α-humulene0.8
191483germacrene-D1.3
201528δ-cadinene0.9
211534citronellyl n-butyrate1.1
221568geranyl n-butyrate1.3
231587caryophyllene oxide1.2
241710gerany ltiglate1.0

aRetention indices on HP-5MS capillary column

b%: Calculated from TIC data

Table 2

Composition (%) and Retention Indices (RI) of the Essential Oil of Vitex agnus-castus L.

NoRIaCompound%b
1954camphene0.2
21145camphor1.1
311754-terpineol0.7
41191α-terpineol2.6
51297n-tridecane0.3
61348α-terpinyl acetate11.6
71351citronellyl acetate0.8
81398n-tetradecane3.3
91417β-caryophyllene5.8
101430β-gurjunene1.2
111436trans-α-bergamotene1.9
121441β-humulene0.8
131445trans- β-farnesene4.8
141456α-humulene2.7
151495bicyclogermacrene8.4
161500n-pentadecane2.6
171523γ-cadinene0.5
181578spathulenol4.7
191584caryophyllene oxide24.9
201602n-hexadecane12.5
211708n-heptadecane4.4
221811n-octadecane1.7

aRetention indices on HP-5MS capillary column

b%: Calculated from TIC data

Growth inhibition zones produced by essential oil of P. graveolens are reported in Table 3.

Table 3

Growth inhibition effect of Pelargonium graveolens essential oil (zone size, mm).

MicroorganismsEssential oil Concentrations (Diluted in DMSO)Standard Antibiotic

Neat1/2¼Amoxicillin (25 µg/disc)Chloramphenicol (30 µg/disc)
E. coli9.5±0.78.1±0.37.0±0.016.3±0.113.6±0.3
P. aeruginosa25.3±1.117.3±1.115.3±1.127.1±0.219.2±0.2
S. aureus42.0±3.234.0±2.814.3±1.539.5±0.128.7±0.3
B. subtilis16.5±0.713.5±0.711.0±0.023.0±0.116.8±0.1
S. enteritidis9.0±0.0NE*NE16.1±0.314.6±0.6
L. monocytogenesNENENE35.0±0.116.0±0.2

*No Effect

Table 4 summarized the antibacterial activity of V. agnus–castus volatile oil. This oil had no effect on L. monocytogenes and E.coli but other four strains were susceptible and S. aureus was again the most sensitive one.

Table 4

Growth inhibition effect of Vitex agnus-castus essential oil (zone size, mm).

MicroorganismsEssential oil Concentrations (Diluted in DMSO)Standard Antibiotic

Neat1/2¼Amoxicillin (25 µg/disc)Chloramphenicol (30 µg/disc)
E. coliNE*NENE16.3±0.113.6±0.3
P. aeruginosa41.0±0.731.0±3.427.0±5.627.1±0.219.2±0.2
S. aureus50.0±0.042.8±3.222.3±3.239.5±0.128.7±0.3
B. subtilis11.0±0.78.5±0.7NE23.0±0.116.8±0.1
S. enteritidis9.0±0.0NENE16.1±0.314.6±0.6
L. monocytogenesNENENE35.0±0.116.0±0.2

*No Effect

DISCUSSION

The main constituents of P. graveolens volatile oil were β-citronellol (36.4%) and citronellyl formate (12.1%). Caryophylle oxide (24.9%), n-hexadecane (12.5%) and α-terpenyl acetate (11.6%) were the main constituents of the volatile oil of V. agnus-castus. There are variations in the composition of these volatile oils in comparison to the volatile oils of other countries. These differences seem to depend on climate changes and conditions and types and methods of distillation (16, 17, 20, 22, 23, 2629).

It seems that the essential oils of P. graveolens and V. agnus-castus cultivated in Iran were characterized as citronellol and caryophyllene oxide chemotypes, respectively. All bacterial strains were susceptible against P. graveolens essential oil except L. monocytogenes. The most sensitive strain was S. aureus and this essential oil had a good inhibiting effect on its growth. V. agnus-castus oil had no effect on L. monocytogenes and E. coli but other four strains were susceptible and S. aureus was again the most sensitive one.

All strains were also sensitive to the control antibiotics (amoxicillin and chloramphenicol). The essential oils of the two plants were active against all of the bacteria (except L. monocytogenes) and the susceptibility of the strains changed with the dilution of essential oils in DMSO. The pure and neat essential oils showed the most extensive inhibition zones and they were very effective antimicrobial system comparing to chloramphenicol and amoxicillin. The activity of the oils would be expected to relate to the composition of the plant essential oils and possible synergistic interaction between components. High proportions of β-citronellol and caryophyllene oxide in our oils make them interesting and valuable subjects for food, medicine, aromatherapy and cosmetics industries where an antiseptic, clean and fresh characteristics flavor and fragrance is desired. The food protective and antimicrobial properties of β-citronellol as prominent part of P. graveolens volatile oil (36) and antifungal, analgesic and anti-inflammatory activities of caryophyllene oxide as famous and important part of V. agnus-castus volatile oil (37, 38) can be considered and may be suitable for use in further nutraceutical and pharmaceutical vehicles.

The antibacterial effects of the essential oils of different species of Pelargonium and Vitex including P. tomentosum, P. denticulatum, P. odoratissimum, P. fragrans and V. negundo and V. trifolia were evaluated previously. They were found to give promising results against several bacteria (39, 40, 41). There are similar compounds in both of our essential oils. They are α-terpineol, citronellyl acetate, β-caryophyllene, α-humulene and caryophyllene oxide. It seems part of the antibacterial effects of these two essential oils are related to these similar compounds especially β-caryophyllene and caryophyllene oxide (38, 42, 43).

The observed antibacterial properties show that they have a good potential for use as antimicrobial agents and natural preservatives in different products. However, further studies are needed to explore the efficiency of suitable concentration and to examine how the combined product exhibit antimicrobial activity. More studies should also confirm the safety of these essential oils and introduce the main compound responsible for antibacterial activity.

ACKNOLEDGEMENTS

We are grateful to Dr. I. Mehregan for his technical assistances in the course of the systematic identification of plant samples. This project was financially supported by the vice-chancellery of research at Isfahan University of Medical Sciences (Research proposal no 82197).

References

  • 1. RotaMCHerreraAMartinezRMSotomayorJAJordanMJAntimicrobial activity and chemical composition of Thymus vulgaris, Thymus zygis and Thymus hyemalis essential oilsFood Control200819681687[Google Scholar]
  • 2. BaydarHSağdiOÖzkanGKaradoganTAntibacterial activity and composition of essential oils from Origanum, Thymbra and Satureja species with commercial importance in TurkeyFood Control200415169172[Google Scholar]
  • 3. DemirciFGuvenKDemirciBDadandiMYBaserKHCAntibacterial activity of two Phlomis essential oils against food pathogensFood Control20081911591164[Google Scholar]
  • 4. SağdiOOzcanMAntibacterial activity of Turkish spice hydrosolsFood Control200314141143[Google Scholar]
  • 5. BakkaliFAverbeckSAverbeckDIdaomarMBiological effects of essential oils – A reviewFood Chem Toxicol200846446475[PubMed][Google Scholar]
  • 6. LeeYSJangKAChaJDSynergistic Antibacterial effect between silibinin and antibiotics in oral bacteriaJ Biomed Biotechnol[PubMed][Google Scholar]
  • 7. ShanabSMMShalabyEAEl-Fayoumy EA. Enteromorpha compressa exhibits potent antioxidant activityJ Biomed Biotechnol[PubMed][Google Scholar]
  • 8. ZanettiSCannasSMolicottiPBuaACubedduMPorceddaSMarongiuBSechiLAEvaluation of the Antimicrobial properties of the essential oil of Myrtuscommunis L. against clinical strains of Mycobacterium sppInterdiscip Perspect Infect Dis[PubMed][Google Scholar]
  • 9. Crespo-OrtizMPWeiMQAntitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drugJ Biomed Biotechnol[PubMed][Google Scholar]
  • 10. CampeloLMLde AlmeidaAACde FreitasRLMCerqueiraGSde SousaGFSaldanhaGBAntioxidant and antinociceptive effects of citrus limon essential oil in miceJ Biomed Biotechnol[PubMed][Google Scholar]
  • 11. AstaniAReichlingJSchnitzlerPScreening for Antiviral Activities of Isolated Compounds from Essential OilsEvid Based Complemen Alternat Med[PubMed][Google Scholar]
  • 12. VukovicNMilosevicTSukdolakSSolujicSAntimicrobial activities of essential oil and methanol extract of Teucrium montanumEvid Based Complement Alternat Med200741720[PubMed][Google Scholar]
  • 13. ZengHTianJZhengYBanXZengJMaoYWangYIn vitro and in vivo activities of essential oil from the Seed of Anethum graveolens L. against Candida sppEvid Based Complement Alternat Med[PubMed][Google Scholar]
  • 14. FurlettiVFTeixeiraIPObando-PeredaGMardeganRCSartorattoAFigueiraGMAction of Coriandrum sativum L. essential oil upon oral Candida albicans biofilm formationEvid Based Complement Alternat Med[PubMed][Google Scholar]
  • 15. NedorostovaLKloucekPKokoskaLStolcovaMPulkrabekJAntimicrobial properties of selected essential oils in vapor phase against foodborne bacteriaFood Control200920157160[Google Scholar]
  • 16. ZargariAMedicinal Plants19894th edTehran, IRANTehran University Publications(in Persian)
  • 17. ZargariAMedicinal Plants19905th edTehran, IRANTehran University Publications(in Persian)
  • 18. AminGPopular Medicnal Plants of Iran (in Persian)2005Tehran, IRANTehran University of Medical Sciences Publications
  • 19. MozaffarianVA Dictionary of Iranian Plant Names1996Tehran, IRANFarhange Moasser
  • 20. AndradeMACardosoMGBatistaLRFreireJMNelsonDLAntimicrobial activity and chemical composition of essential oil of Pelargonium odoratissimumBraz J Pharmacognosy2011214752[Google Scholar]
  • 21. ElmannAMordechaySRindnerMRavidUAnti-neuroinflammatory effects of geranium oil in microglial cellsJ Func Food201021722[Google Scholar]
  • 22. FayedSAAntioxidant and anticancer activities of Citrus reticulate (Petitgrain Mandarin) and Pelargonium graveolens (Geranium) essential oilsRes J Agric Biol Sci20095740747[Google Scholar]
  • 23. StojkovicDSokovichMGlamoclijaJDzamicACiricARisticMChemical composition and antimicrobial activity of Vitex agnus-castus L. fruits and leaves essential oilFood Chem201112810171022[Google Scholar]
  • 24. MeenaAKSinghUYadavAKSinghBRaoMMPharmacological and phytochemical evidences for the extracts from plants of the genus Vitex- A reviewInt J Pharm Clinic Res2010219[Google Scholar]
  • 25. Lis-BalchinMEssential oil profiles and their possible use in hybridization of some common scented GeraniumsJ Essent Oil Res1991399195[Google Scholar]
  • 26. Jalali-HeraviMZekavatBSereshtiHCharacterization of essential oil components of Iranian geranium oil using gas chromatography-mass spectrometry combined with chemometric techniquesJ Chromatogr20061114154163[Google Scholar]
  • 27. BabuKGDKaulVKVariation in essential oil composition of rose-scented geranium (Pelargonium sp.) distilled by different distillation techniquesFlavour Frag J200520222231[Google Scholar]
  • 28. ArokiyarajSPerinbamKAgastianPKumarMRPhytochemical analysis and antibacterial activity of Vitex agnus-castusInt J Green Pharm20093162164[Google Scholar]
  • 29. Abbas AzimiRJamzadZSefidkonFBakhshi-KhanikiGThe potential value of phytochemical and micromorphological characters in taxonomic treatment of genus Vitex LIran J Bot2006121535[Google Scholar]
  • 30. AsadipourARezaeiZSaberi-AmoliSAmanzadehYGhannadiAVolatile constituents of the aerial parts of Cymbopogon olivieri (Boiss.) Bor. from IranJ Essent Oil Bear Pl200365154[Google Scholar]
  • 31. MohagheghzadehAShams-ArdekaniMRGhannadiALinalool-rich essential oil of Zataria multifloraFlavour Frag J200015119122[Google Scholar]
  • 32. KaboucheAGhannadiAKaboucheZThymus ciliatus- The highest thymol containing essential oil of the genusNat Prod Commun2009412511252[PubMed][Google Scholar]
  • 33. MclaffertyFWStaufferDBThe Important Peak Index of the Registry of Mass Spectral Data1991New YorkJohn Wiley & Sons Inc
  • 34. AdamsRPIdentification of essential oil components by gas chromatography/mass spectroscopy1995Carol StreamAllured Publishing Co
  • 35. SadraeiHGhannadiAMalekshahiKRelaxant effect of essential oil of Melissa officinalis and citral on rat ileum contractionsFitoterapia200374445452[PubMed][Google Scholar]
  • 36. JeonJHLeeCHLeeHSFood protective effect of geraniol and its congeners against stored food mitesJ Food Prot20097214681471[PubMed][Google Scholar]
  • 37. ChavanMJWaktePSShindeDBAnalgesic and anti-inflammatory activity of caryophyllene oxide from Annona squamosa L. barkPhytomedicine201017149151[PubMed][Google Scholar]
  • 38. YangDMichelLChaumontJPMillet-ClercJUse of caryophyllene oxide as an antifungal agent in an in vitro experimental model of onychomycosisMycopathologia19991487982[PubMed][Google Scholar]
  • 39. Lis-BalchinMBuchbauerGRibischKWengerMTComparative antibacterial effects of novel Pelargonium essential oils and solvent extractsLett Appl Microbiol199827135141[PubMed][Google Scholar]
  • 40. Esath NatheerSSekarCAmutharajPSyed Abdul RahmanMFeroz KhanKEvaluation of antibacterial activity of Morinda citrifolia, Vitex trifolia and Chromolaena odorataAfr J Pharm Pharmacol20126783788[Google Scholar]
  • 41. KhokraSLPrakashOJainSAnejaKRDhinigraYEssential oil composition and antibacterial studies of Vitex negundo LinnExtracts. Indian J Pharm Sci200870522526[Google Scholar]
  • 42. MontanariRMBarbosaLCADemunerAJSilvaCJChemical composition and antibacterial activity of essential oils from Verbenaceae species-alternative sources of (E)-caryophyllene and germacrene-DQuim Nova20113415501555[Google Scholar]
  • 43. BabySMathewDAnilJJRajaniKRenjuKVVarugheseGCaryophyllene-rich rhizome oil of Zingiber nimmonii from south India: chemical characterization and antimicrobial activityPhytochemistry20066724692473[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.