A Tyrosine Aminomutase from Rice (Oryza sativa) Isomerizes (S)-α- to (R)-β-Tyrosine with Unique High Enantioselectivity and Retention of Configuration.
Journal: 2016/May - Biochemistry
ISSN: 1520-4995
Abstract:
A recently discovered 3,5-dihydro-5-methylidene-4H-imidazol-4-one (MIO)-dependent tyrosine aminomutase (OsTAM) from rice [Yan, J., et al. (2015) Plant Cell 27, 1265] converts (S)-α-tyrosine to a mixture of (R)- and (S)-β-tyrosines, with high (94%) enantiomeric excess, which does not change with pH, like it does for two bacterial TAMs. The K(M) of 490 μM and the k(cat) of 0.005 s(-1) are similar for other TAM enzymes. OsTAM is unique and also catalyzes (R)-β- from (S)-α-phenylalanine. OsTAM principally retains the configuration at the reactive C(α) and C(β) centers during catalysis much like the phenylalanine aminomutase on the Taxol biosynthetic pathway in Taxus plants.
Relations:
Drugs
(3)
Chemicals
(1)
Organisms
(1)
Processes
(6)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.