Metabolic fate of isotopes during the biological transformation of carbohydrates to 2,5-dimethyl-4-hydroxy-3(2h)-furanone in strawberry fruits.
Journal: 2001/December - Journal of Agricultural and Food Chemistry
ISSN: 0021-8561
PUBMED: 11368615
Abstract:
Isotopically labeled D-glucose, D-fructose, 1-deoxy-D-fructose, and 6-deoxyhexoses were applied to detached ripening strawberry (Fragaria x ananassa) fruits, and the incorporation of the isotopes into the key strawberry aroma compounds 2,5-dimethyl-4-hydroxy-3(2H)-furanone (DMHF, 1) and 2,5-dimethyl-4-methoxy-3(2H)-furanone (DMMF, 2) was determined by gas chromatography-mass spectrometry. In contrast to previous reports the data clearly showed that 6-deoxy-D-fructose/6-deoxy-D-glucose and 1-deoxy-D-fructose are not natural precursors of the furanones. However, isotopically labeled 1 and 2 were observed after the application of [1-(2)H]-, [2-(2)H]-, and [6,6-(2)H(2)]-D-glucose as well as [U-(13)C(6)]-, [1-(13)C]-, [1-(2)H]-, [6,6-(2)H(2)]-D-fructose. The isotope label of [4-(2)H]-D-glucose was not recovered in the furanones. In contrast, [2-(2)H]-D-glucose was converted to [1- or 6-(2)H]-1 and [1- or 6-(2)H]-2 by the strawberry fruits. The observed isotope shift can be explained by the catalysis of phosphohexose isomerase in the course of the biogenesis of the hydroxyfuranone (1) and the methoxyfuranone (2) from D-glucose. Thus, the applied D-glucose is metabolized to D-fructose-6-phosphate prior to the transformation into the furanones.
Relations:
Citations
(5)
Chemicals
(1)
Processes
(1)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.