Induction of premature mitosis in root meristem cells of Vicia faba and Pisum sativum by various agents is correlated with an increased level of protein phosphorylation.
Journal: 2002/September - Folia Histochemica et Cytobiologica
ISSN: 0239-8508
PUBMED: 11885810
Abstract:
The intra-S-phase checkpoint response to hydroxyurea (HU)-mediated arrest of DNA replication was analysed in root meristems of two legumes, Pisum sativum and Vicia faba. The obtained results suggest that a molecular signal which invokes mechanisms allowing the cells to override the S-M dependency control system may be generated by caffeine (CF) and a number of alternative, yet related chemical agents, benzyl-6-aminopurine (BAP), 2-aminopurine (2-AP), and 6-dimethylaminopurine (DMAP). A variety of aberrant mitotic divisions included chromosomal breaks and gaps, lost and lagging chromatids and chromosomes, acentric fragments, chromosome bridges and micronuclei. Furthermore, similar effects induced by sodium vanadate, an inhibitor of protein phosphatases, extend the number of inhibitors capable of inducing premature chromosome condensation (PCC) in root meristem cells, as well as the range of possible regulatory pathways leading to the transition from S-phase arrest towards abnormal mitosis. Until preprophase, FITC-conjugated monoclonal antibodies (alpha-Y(a)b-FITC) that specifically recognize phosphorylated form of threonine indicate no evident cell cycle-dependent changes in an overall phosphorylation status of root meristem cells in the control plants. Irrespective of the stage of interphase, alpha-Y(p)ab-FITC was localized basically in the cytoplasm, whereas nuclear staining was considerably weaker, with a significant fluorescence confined merely to nucleolar regions. The intensity of alpha-Y(p)ab-FITC staining in HU/CF-treated seedlings was found higher than that in the control plants (with the exception of G2 cells), suggesting a general increase in the level of protein phosphorylation, a physiological response mediated probably by an enhanced activity of the cdc-like protein kinase(s).
Relations:
Citations
(3)
Conditions
(1)
Drugs
(5)
Chemicals
(6)
Organisms
(1)
Processes
(5)
Anatomy
(3)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.