The transesterification of rapeseed and waste sunflower oils: Mass-transfer and kinetics in a laboratory batch reactor and in an industrial-scale reactor/separator setup.
Journal: 2010/May - Bioresource Technology
ISSN: 1873-2976
Abstract:
We have investigated the transesterification of rapeseed (RO) and waste sunflower (SO) oils with methanol in the presence of potassium hydroxide as a catalyst. The transesterification of tri-acylglycerols was first conducted in a batch reactor. The effect of the temperature on the reaction rates was studied at a constant molar ratio of the alcohol to tri-acylglycerols (6:1) and for a constant concentration of the catalyst (1.0wt%). Size-exclusion chromatography and (1)H NMR spectroscopy were used to quantitatively monitor the transesterification reaction. The mass-transfer coefficients of the tri-acylglycerols during the initial transesterification stage were found to be 0.2-1.2x10(-5)mmin(-1), depending on the type of oil and the temperature. Calculated activation energies implied that at higher temperatures the formation of mono-acylglycerols and glycerole was favored for the SO (93kJ/mol for the forward and 48kJ/mol for the backward reaction) and the RO (47kJ/mol for the forward and 36kJ/mol for the backward reaction), respectively. For the continuous industrial reactor/separator setup, the optimum methanol recycle ratio was established as 0.0550.
Relations:
Chemicals
(4)
Processes
(2)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.