The neuroprotective effect of eupatilin against ischemia/reperfusion-induced delayed neuronal damage in mice.
Journal: 2013/May - European Journal of Pharmacology
ISSN: 1879-0712
Abstract:
Eupatilin, a pharmacologically active flavone derived from the Artemisia plant species, has been reported to have anti-oxidant, anti-inflammatory, anti-allergic, and anti-tumor activities. In the present study, we investigated whether eupatilin exhibits neuroprotective activities against ischemia/reperfusion-induced delayed neuronal injury in mice. Transient global cerebral ischemia was induced in mice by bilateral common carotid artery occlusion (BCCAO) for 15 min followed by reperfusion for 4 days. Eupatilin (1, 3, or 10 mg/kg, p.o.) was administered immediately after the reperfusion. Histochemical studies showed that eupatilin (10 mg/kg) increased the number of viable cells detected by Nissl staining and decreased the number of degenerating neuronal cells detected by Fluoro-Jade B staining in the hippocampal CA1 region. Western blotting indicated that eupatilin further increased the level of Akt phosphorylation at 8h after BCCAO. Furthermore, wortmannin, a phosphatidylinositol 3-kinase inhibitor, attenuated the eupatilin-induced increase of Akt phosphorylation. In addition, wortmannin completely reversed the eupatilin-induced neuroprotective effects observed at 4 days after reperfusion. These findings suggest that eupatilin is a promising therapeutic agent against global cerebral ischemia-induced neuronal damage and that its neuroprotective effects may be mediated in part by increased Akt phosphorylation.
Relations:
Citations
(7)
Diseases
(1)
Conditions
(1)
Drugs
(1)
Chemicals
(3)
Organisms
(2)
Processes
(1)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.