Kinetics of α-amylase and α-glucosidase inhibitory potential of Zea mays Linnaeus (Poaceae), Stigma maydis aqueous extract: An in vitro assessment.
Journal: 2016/December - Journal of Ethnopharmacology
ISSN: 1872-7573
Abstract:
BACKGROUND
Corn silk (Zea mays L., Stigma maydis) is an important herb used traditionally in many parts of the world to treat array of diseases including diabetes mellitus. Inhibitors of α-amylase and α-glucosidase offer an effective strategy to modulate levels of post prandial hyperglycaemia via control of starch metabolism.
OBJECTIVE
This study evaluated α-amylase and α-glucosidase inhibitory potentials of corn silk aqueous extract. Active principles and antioxidant attributes of the extract were also analysed.
METHODS
The α-amylase inhibitory potential of the extract was investigated by reacting its different concentrations with α-amylase and starch solution, while α-glucosidase inhibition was determined by pre-incubating α-glucosidase with different concentrations of the extract followed by addition of p-nitrophenylglucopyranoside. The mode(s) of inhibition of the enzymes were determined using Lineweaver-Burke plot.
RESULTS
In vitro analysis of the extract showed that it exhibited potent and moderate inhibitory potential against α-amylase and α-glucosidase, respectively. The inhibition was concentration-dependent with respective half-maximal inhibitory concentration (IC50) values of 5.89 and 0.93mg/mL. Phytochemical analyses revealed the presence of alkaloids, flavonoids, phenols, saponins, tannins and phytosterols as probable inhibitory constituents. Furthermore, the extract remarkably scavenges reactive oxygen species like DPPH and nitric oxide radicals, elicited good reducing power and a significant metal chelating attributes.
CONCLUSIONS
Overall, the non-competitive and uncompetitive mechanism of action of corn silk extract is due to its inhibitory effects on α-amylase and α-glucosidase, respectively. Consequently, this will reduce the rate of starch hydrolysis, enhance palliated glucose levels, and thus, lending credence to hypoglycaemic candidature of corn silk.
Relations:
Citations
(6)
Diseases
(1)
Drugs
(1)
Chemicals
(11)
Organisms
(2)
Processes
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.