Cytotoxicity and apoptosis enhancement in breast and cervical cancer cells upon coadministration of mitomycin C and essential oils in nanoemulsion formulations.
Journal: 2018/August - Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
ISSN: 1950-6007
Abstract:
The present study aimed to solubilize the antineoplastic agent, mitomycin C (MMC), in two nanoemulsions (NEs) consisting of different essential oils (ginger (Gi) and frankincense (Fr)) in order to examine their anticancer activities on the HeLa cervical cancer cells and MCF-7 breast cancer cells. The two NEs-based Gi and Fr oil were produced by a high-pressure homogenization technique followed by solubilizing of the MMC in both NE formulas. The produced formulas were physically characterized by zetasizer and were applied on HeLa and MCF-7 cells at various concentrations for 24 h. The cytotoxicity assays were performed in vitro, using MTT assay, Coomassie blue staining for cellular morphology evaluation, and DAPI fluorescent staining for molecular cell death assessment. The average droplet diameters of the blank NEs have markedly increased and the charges of the droplets were significantly reversed when MMC was loaded. The potential cytotoxicity of the blank and combined formulas on HeLa and MCF-7 cells were dose-dependent and significantly greater than the toxicities of the free MMC. Among the MMC-loaded NE formulas, Fr-MMC has endured the nuclear apoptosis in HeLa cells at a lower concentration and reported the least % of florescence uptake compared to Gi-MMC. In contrast, the combination formula, Gi-MMC, has the strongest apoptotic effect on the MCF-7 cell line since it has the least % florescence uptake compared to the other formulations. Mixing MMC with Gi-NE and Fr-NE has considerably improved its cytotoxicity on the MCF-7 and HeLa cells.
Relations:
Citations
(5)
Drugs
(3)
Similar articles
Articles by the same authors
Discussion board
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.