Bone marrow stromal cells as a therapeutic treatment for ischemic stroke.
Journal: 2015/January - Neuroscience Bulletin
ISSN: 1995-8218
Abstract:
Cerebral ischemia remains the most frequent cause of death and quality-of-life impairments due to neurological deficits, and accounts for the majority of total healthcare costs. However, treatments for cerebral ischemia are limited. Over the last decade, bone marrow stromal cell (BMSC) therapy has emerged as a particularly appealing option, as it is possible to help patients even when initiated days or even weeks after the ischemic insult. BMSCs are a class of multipotent, self-renewing cells that give rise to differentiated progeny when implanted into appropriate tissues. Therapeutic effects of BMSC treatment for ischemic stroke, including sensory and motor recovery, have been reported in pre-clinical studies and clinical trials. In this article, we review the recent progress in BMSC-based therapy for ischemic stroke, focusing on the route of delivery and pre-processing of BMSCs. Selecting an optimal delivery route is of particular importance. The ideal approach, as well as the least risky, for translational applications still requires further identification. Appropriate preprocessing of BMSCs or combination therapy has the benefit of achieving the maximum possible restoration. Further pre-clinical studies are required to determine the time-window for transplantation and the appropriate dosage of cells.
Relations:
Content
Citations
(9)
References
(79)
Diseases
(1)
Conditions
(1)
Organisms
(2)
Anatomy
(1)
Affiliates
(1)
Similar articles
Articles by the same authors
Discussion board
Neurosci Bull 30(3): 524-534

Bone marrow stromal cells as a therapeutic treatment for ischemic stroke

Abstract

Cerebral ischemia remains the most frequent cause of death and quality-of-life impairments due to neurological deficits, and accounts for the majority of total healthcare costs. However, treatments for cerebral ischemia are limited. Over the last decade, bone marrow stromal cell (BMSC) therapy has emerged as a particularly appealing option, as it is possible to help patients even when initiated days or even weeks after the ischemic insult. BMSCs are a class of multipotent, self-renewing cells that give rise to differentiated progeny when implanted into appropriate tissues. Therapeutic effects of BMSC treatment for ischemic stroke, including sensory and motor recovery, have been reported in pre-clinical studies and clinical trials. In this article, we review the recent progress in BMSC-based therapy for ischemic stroke, focusing on the route of delivery and pre-processing of BMSCs. Selecting an optimal delivery route is of particular importance. The ideal approach, as well as the least risky, for translational applications still requires further identification. Appropriate preprocessing of BMSCs or combination therapy has the benefit of achieving the maximum possible restoration. Further pre-clinical studies are required to determine the time-window for transplantation and the appropriate dosage of cells.

Keywords: bone marrow stromal cell, cerebral ischemia, transplantation, neuroprotection, administration method
Department of Neurology, First Hospital and Clinical College, Harbin Medical University, Harbin, 150001 China
Yujun Pan, Email: nc.ude.umbrh.sme@napnujuy.
Corresponding author.
Received 2013 Jul 23; Accepted 2013 Dec 12.

Footnotes

These authors contributed equally to this work.

Footnotes

References

  • 1. Chang YC, Shyu WC, Lin SZ, Li HRegenerative therapy for stroke. Cell Transplant. 2007;16:171–181.[PubMed][Google Scholar]
  • 2. Deng W, Obrocka M, Fischer I, Prockop DJIn vitro differentiation of human marrow stromal cells into early progenitors of neural cells by conditions that increase intracellular cyclic AMP. Biochem Biophys Res Commun. 2001;282:148–152. doi: 10.1006/bbrc.2001.4570.] [[PubMed][Google Scholar]
  • 3. Jaiswal RK, Jaiswal N, Bruder SP, Mbalaviele G, Marshak DR, Pittenger MFAdult human mesenchymal stem cell differentiation to the osteogenic or adipogenic lineage is regulated by mitogen-activated protein kinase. J Biol Chem. 2000;275:9645–9652. doi: 10.1074/jbc.275.13.9645.] [[PubMed][Google Scholar]
  • 4. Tang Y, Yasuhara T, Hara K, Matsukawa N, Maki M, Yu G, et al Transplantation of bone marrow-derived stem cells: a promising therapy for stroke. Cell Transplant. 2007;16:159–169.[PubMed][Google Scholar]
  • 5. Li Y, Chen J, Wang L, Lu M, Chopp MTreatment of stroke in rat with intracarotid administration of marrow stromal cells. Neurology. 2001;56:1666–1672. doi: 10.1212/WNL.56.12.1666.] [[PubMed][Google Scholar]
  • 6. Woodbury D, Reynolds K, Black IBAdult bone marrow stromal stem cells express germline, ectodermal, endodermal, and mesodermal genes prior to neurogenesis. J Neurosci Res. 2002;69:908–917. doi: 10.1002/jnr.10365.] [[PubMed][Google Scholar]
  • 7. Fukuda KDevelopment of regenerative cardiomyocytes from mesenchymal stem cells for cardiovascular tissue engineering. Artif Organs. 2001;25:187–193. doi: 10.1046/j.1525-1594.2001.025003187.x.] [[PubMed][Google Scholar]
  • 8. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al Multilineage potential of adult human mesenchymal stem cells. Science. 1999;284:143–147. doi: 10.1126/science.284.5411.143.] [[PubMed][Google Scholar]
  • 9. Chen JR, Cheng GY, Sheu CC, Tseng GF, Wang TJ, Huang YSTransplanted bone marrow stromal cells migrate, differentiate and improve motor function in rats with experimentally induced cerebral stroke. J Anat. 2008;213:249–258. doi: 10.1111/j.1469-7580.2008.00948.x.] [[Google Scholar]
  • 10. Nezhadi A, Ghazi F, Rassoli H, Bakhtiari M, Ataiy Z, Soleimani S, et al BMSC and CoQ10 improve behavioural recovery and histological outcome in rat model of Parkinson’s disease. Pathophysiology. 2011;18:317–324. doi: 10.1016/j.pathophys.2011.05.004.] [[PubMed][Google Scholar]
  • 11. Zacharek A, Shehadah A, Chen J, Cui X, Roberts C, Lu M, et al Comparison of bone marrow stromal cells derived from stroke and normal rats for stroke treatment. Stroke. 2010;41:524–530. doi: 10.1161/STROKEAHA.109.568881.] [[Google Scholar]
  • 12. Guo F, Lv S, Lou Y, Tu W, Liao W, Wang Y, et al Bone marrow stromal cells enhance the angiogenesis in ischaemic cortex after stroke: involvement of notch signalling. Cell Biol Int. 2012;36:997–1004. doi: 10.1042/CBI20110596.] [[PubMed][Google Scholar]
  • 13. Yoo SW, Kim SS, Lee SY, Lee HS, Kim HS, Lee YD, et al Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Exp Mol Med. 2008;40:387–397. doi: 10.3858/emm.2008.40.4.387.] [[Google Scholar]
  • 14. Li Y, Chopp M, Chen J, Wang L, Gautam SC, Xu YX, et al Intrastriatal transplantation of bone marrow nonhematopoietic cells improves functional recovery after stroke in adult mice. J Cereb Blood Flow Metab. 2000;20:1311–1319. doi: 10.1097/00004647-200009000-00006.] [[PubMed][Google Scholar]
  • 15. Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, et al Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res. 2004;1010:108–116. doi: 10.1016/j.brainres.2004.02.072.] [[PubMed][Google Scholar]
  • 16. Shen LH, Li Y, Chen J, Zhang J, Vanguri P, Borneman J, et al Intracarotid transplantation of bone marrow stromal cells increases axon-myelin remodeling after stroke. Neuroscience. 2006;137:393–399. doi: 10.1016/j.neuroscience.2005.08.092.] [[PubMed][Google Scholar]
  • 17. Liu N, Deguchi K, Yamashita T, Liu W, Ikeda Y, Abe KIntracerebral transplantation of bone marrow stromal cells ameliorates tissue plasminogen activator-induced brain damage after cerebral ischemia in mice detected by in vivo and ex vivo optical imaging. J Neurosci Res. 2012;90:2086–2093. doi: 10.1002/jnr.23104.] [[PubMed][Google Scholar]
  • 18. Liu N, Chen R, Du H, Wang J, Zhang Y, Wen JExpression of IL-10 and TNF-alpha in rats with cerebral infarction after transplantation with mesenchymal stem cells. Cell Mol Immunol. 2009;6:207–213. doi: 10.1038/cmi.2009.28.] [[Google Scholar]
  • 19. Zhao LR, Duan WM, Reyes M, Keene CD, Verfaillie CM, Low WCHuman bone marrow stem cells exhibit neural phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats. Exp Neurol. 2002;174:11–20. doi: 10.1006/exnr.2001.7853.] [[PubMed][Google Scholar]
  • 20. Irons H, Lind JG, Wakade CG, Yu G, Hadman M, Carroll J, et al Intracerebral xenotransplantation of GFP mouse bone marrow stromal cells in intact and stroke rat brain: graft survival and immunologic response. Cell Transplant. 2004;13:283–294. doi: 10.3727/000000004783983990.] [[PubMed][Google Scholar]
  • 21. Shichinohe H, Kuroda S, Lee JB, Nishimura G, Yano S, Seki T, et al In vivo tracking of bone marrow stromal cells transplanted into mice cerebral infarct by fluorescence optical imaging. Brain Res Brain Res Protoc. 2004;13:166–175. doi: 10.1016/j.brainresprot.2004.04.004.] [[PubMed][Google Scholar]
  • 22. Chen J, Li Y, Wang L, Lu M, Zhang X, Chopp MTherapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischemia in rats. J Neurol Sci. 2001;189:49–57. doi: 10.1016/S0022-510X(01)00557-3.] [[PubMed][Google Scholar]
  • 23. Miyamoto M, Kuroda S, Zhao S, Magota K, Shichinohe H, Houkin K, et al Bone marrow stromal cell transplantation enhances recovery of local glucose metabolism after cerebral infarction in rats: a serial 18F-FDG PET study. J Nucl Med. 2013;54:145–150. doi: 10.2967/jnumed.112.109017.] [[PubMed][Google Scholar]
  • 24. Zhang C, Li Y, Chen J, Gao Q, Zacharek A, Kapke A, et al Bone marrow stromal cells upregulate expression of bone morphogenetic proteins 2 and 4, gap junction protein connexin-43 and synaptophysin after stroke in rats. Neuroscience. 2006;141:687–695. doi: 10.1016/j.neuroscience.2006.04.054.] [[PubMed][Google Scholar]
  • 25. Keimpema E, Fokkens MR, Nagy Z, Agoston V, Luiten PG, Nyakas C, et al Early transient presence of implanted bone marrow stem cells reduces lesion size after cerebral ischaemia in adult rats. Neuropathol Appl Neurobiol. 2009;35:89–102. doi: 10.1111/j.1365-2990.2008.00961.x.] [[PubMed][Google Scholar]
  • 26. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, et al Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke. 2001;32:1005–1011. doi: 10.1161/01.STR.32.4.1005.] [[PubMed][Google Scholar]
  • 27. Wang L, Li Y, Chen J, Gautam SC, Zhang Z, Lu M, et al Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp Hematol. 2002;30:831–836. doi: 10.1016/S0301-472X(02)00829-9.] [[PubMed][Google Scholar]
  • 28. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, et al Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res. 2003;92:692–699. doi: 10.1161/01.RES.0000063425.51108.8D.] [[PubMed][Google Scholar]
  • 29. Chen J, Li Y, Zhang R, Katakowski M, Gautam SC, Xu Y, et al Combination therapy of stroke in rats with a nitric oxide donor and human bone marrow stromal cells enhances angiogenesis and neurogenesis. Brain Res. 2004;1005:21–28. doi: 10.1016/j.brainres.2003.11.080.] [[PubMed][Google Scholar]
  • 30. Zhang J, Li Y, Chen J, Yang M, Katakowski M, Lu M, et al Expression of insulin-like growth factor 1 and receptor in ischemic rats treated with human marrow stromal cells. Brain Res. 2004;1030:19–27. doi: 10.1016/j.brainres.2004.09.061.] [[PubMed][Google Scholar]
  • 31. Xin H, Li Y, Cui Y, Yang JJ, Zhang ZG, Chopp MSystemic administration of exosomes released from mesenchymal stromal cells promote functional recovery and neurovascular plasticity after stroke in rats. J Cereb Blood Flow Metab. 2013;3311:1711–1715. doi: 10.1038/jcbfm.2013.152.] [[Google Scholar]
  • 32. Chen J, Li Y, Katakowski M, Chen X, Wang L, Lu D, et al Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J Neurosci Res. 2003;73:778–786. doi: 10.1002/jnr.10691.] [[PubMed][Google Scholar]
  • 33. Okazaki T, Magaki T, Takeda M, Kajiwara Y, Hanaya R, Sugiyama K, et al Intravenous administration of bone marrow stromal cells increases survivin and Bcl-2 protein expression and improves sensorimotor function following ischemia in rats. Neurosci Lett. 2008;430:109–114. doi: 10.1016/j.neulet.2007.10.046.] [[PubMed][Google Scholar]
  • 34. Zheng W, Honmou O, Miyata K, Harada K, Suzuki J, Liu H, et al Therapeutic benefits of human mesenchymal stem cells derived from bone marrow after global cerebral ischemia. Brain Res. 2010;1310:8–16. doi: 10.1016/j.brainres.2009.11.012.] [[PubMed][Google Scholar]
  • 35. Kawabori M, Kuroda S, Ito M, Shichinohe H, Houkin K, Kuge Y, et al Timing and cell dose determine therapeutic effects of bone marrow stromal cell transplantation in rat model of cerebral infarct. Neuropathology. 2013;33:140–148. doi: 10.1111/j.1440-1789.2012.01335.x.] [[PubMed][Google Scholar]
  • 36. Jang DK, Park SI, Han YM, Jang KS, Park MS, Chung YA, et al Motor-evoked potential confirmation of functional improvement by transplanted bone marrow mesenchymal stem cell in the ischemic rat brain. J Biomed Biotechnol. 2011;2011:238409.[Google Scholar]
  • 37. Bliss TM, Andres RH, Steinberg GKOptimizing the success of cell transplantation therapy for stroke. Neurobiol Dis. 2010;37:275–283. doi: 10.1016/j.nbd.2009.10.003.] [[Google Scholar]
  • 38. Wu J, Sun Z, Sun HS, Weisel RD, Keating A, Li ZH, et al Intravenously administered bone marrow cells migrate to damaged brain tissue and improve neural function in ischemic rats. Cell Transplant. 2008;16:993–1005. doi: 10.3727/000000007783472435.] [[PubMed][Google Scholar]
  • 39. Fischer UM, Harting MT, Jimenez F, Monzon-Posadas WO, Xue H, Savitz SI, et al Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells Dev. 2009;18:683–692. doi: 10.1089/scd.2008.0253.] [[Google Scholar]
  • 40. Honma T, Honmou O, Iihoshi S, Harada K, Houkin K, Hamada H, et al Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Exp Neurol. 2006;199:56–66. doi: 10.1016/j.expneurol.2005.05.004.] [[Google Scholar]
  • 41. Li Y, McIntosh K, Chen J, Zhang C, Gao Q, Borneman J, et al Allogeneic bone marrow stromal cells promote glial-axonal remodeling without immunologic sensitization after stroke in rats. Exp Neurol. 2006;198:313–325. doi: 10.1016/j.expneurol.2005.11.029.] [[PubMed][Google Scholar]
  • 42. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, et al Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab. 2007;271:6–13. doi: 10.1038/sj.jcbfm.9600311.] [[PubMed][Google Scholar]
  • 43. Pavlichenko N, Sokolova I, Vijde S, Shvedova E, Alexandrov G, Krouglyakov P, et al Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats. Brain Res. 2008;1233:203–213. doi: 10.1016/j.brainres.2008.06.123.] [[PubMed][Google Scholar]
  • 44. Omori Y, Honmou O, Harada K, Suzuki J, Houkin K, Kocsis JDOptimization of a therapeutic protocol for intravenous injection of human mesenchymal stem cells after cerebral ischemia in adult rats. Brain Res. 2008;1236:30–38. doi: 10.1016/j.brainres.2008.07.116.] [[Google Scholar]
  • 45. Gopurappilly R, Pal R, Mamidi MK, Dey S, Bhonde R, Das AKStem cells in stroke repair: current success and future prospects. CNS Neurol Disord Drug Targets. 2011;10:741–756. doi: 10.2174/187152711797247894.] [[PubMed][Google Scholar]
  • 46. Ikeda N, Nonoguchi N, Zhao MZ, Watanabe T, Kajimoto Y, Furutama D, et al Bone marrow stromal cells that enhanced fibroblast growth factor-2 secretion by herpes simplex virus vector improve neurological outcome after transient focal cerebral ischemia in rats. Stroke. 2005;36:2725–2730. doi: 10.1161/01.STR.0000190006.88896.d3.] [[PubMed][Google Scholar]
  • 47. Zhao MZ, Nonoguchi N, Ikeda N, Watanabe T, Furutama D, Miyazawa D, et al Novel therapeutic strategy for stroke in rats by bone marrow stromal cells and ex vivo HGF gene transfer with HSV-1 vector. J Cereb Blood Flow Metab. 2006;26:1176–1188. doi: 10.1038/sj.jcbfm.9600233.] [[PubMed][Google Scholar]
  • 48. Hokari M, Kuroda S, Chiba Y, Maruichi K, Iwasaki YSynergistic effects of granulocyte-colony stimulating factor on bone marrow stromal cell transplantation for mice cerebral infarct. Cytokine. 2009;46:260–266. doi: 10.1016/j.cyto.2009.02.008.] [[PubMed][Google Scholar]
  • 49. Nomura T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. I.V. infusion of brain-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Neuroscience. 2005;136:161–169. doi: 10.1016/j.neuroscience.2005.06.062.] [
  • 50. Horita Y, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JDIntravenous administration of glial cell line-derived neurotrophic factor gene-modified human mesenchymal stem cells protects against injury in a cerebral ischemia model in the adult rat. J Neurosci Res. 2006;84:1495–1504. doi: 10.1002/jnr.21056.] [[Google Scholar]
  • 51. Liu H, Honmou O, Harada K, Nakamura K, Houkin K, Hamada H, et al Neuroprotection by PlGF gene-modified human mesenchymal stem cells after cerebral ischaemia. Brain. 2006;129:2734–2745. doi: 10.1093/brain/awl207.] [[Google Scholar]
  • 52. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JDTherapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab. 2008;28:329–340. doi: 10.1038/sj.jcbfm.9600527.] [[Google Scholar]
  • 53. Mimura T, Dezawa M, Kanno H, Yamamoto IBehavioral and histological evaluation of a focal cerebral infarction rat model transplanted with neurons induced from bone marrow stromal cells. J Neuropathol Exp Neurol. 2005;64:1108–1117. doi: 10.1097/01.jnen.0000190068.03009.b5.] [[PubMed][Google Scholar]
  • 54. Wei L, Rovainen CM, Woolsey TAMinistrokes in rat barrel cortex. Stroke. 1995;26:1459–1462. doi: 10.1161/01.STR.26.8.1459.] [[PubMed][Google Scholar]
  • 55. Song M, Mohamad O, Gu X, Wei L, Yu SPRestoration of intracortical and thalamocortical circuits after transplantation of bone marrow mesenchymal stem cells into the ischemic brain of mice. Cell Transplant. 2013;2211:2001–2015. doi: 10.3727/096368912X657909.] [[PubMed][Google Scholar]
  • 56. Wei N, Yu SP, Gu X, Taylor TM, Song D, Liu XF, et al Delayed intranasal delivery of hypoxic-preconditioned bone marrow mesenchymal stem cells enhanced cell homing and therapeutic benefits after ischemic stroke in mice. Cell Transplant. 2013;22:977–991. doi: 10.3727/096368912X657251.] [[PubMed][Google Scholar]
  • 57. Chen C, Cheng Y, Chen JTransfection of Noggin in bone marrow stromal cells (BMSCs) enhances BMSC-induced functional outcome after stroke in rats. J Neurosci Res. 2011;89:1194–1202. doi: 10.1002/jnr.22662.] [[PubMed][Google Scholar]
  • 58. Yu X, Chen D, Zhang Y, Wu X, Huang Z, Zhou H, et al Overexpression of CXCR4 in mesenchymal stem cells promotes migration, neuroprotection and angiogenesis in a rat model of stroke. J Neurol Sci. 2012;316:141–149. doi: 10.1016/j.jns.2012.01.001.] [[PubMed][Google Scholar]
  • 59. Li Y, Chen J, Chen XG, Wang L, Gautam SC, Xu YX, et al Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology. 2002;59:514–523. doi: 10.1212/WNL.59.4.514.] [[PubMed][Google Scholar]
  • 60. Toyama K, Honmou O, Harada K, Suzuki J, Houkin K, Hamada H, et al Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Exp Neurol. 2009;216:47–55. doi: 10.1016/j.expneurol.2008.11.010.] [[PubMed][Google Scholar]
  • 61. Krause C, Guzman A, Knaus PNoggin. Int J Biochem Cell Biol. 2011;43:478–481. doi: 10.1016/j.biocel.2011.01.007.] [[PubMed][Google Scholar]
  • 62. Ding J, Cheng Y, Gao S, Chen JEffects of nerve growth factor and Noggin-modified bone marrow stromal cells on stroke in rats. J Neurosci Res. 2011;89:222–230. doi: 10.1002/jnr.22535.] [[PubMed][Google Scholar]
  • 63. Francis KR, Wei LHuman embryonic stem cell neural differentiation and enhanced cell survival promoted by hypoxic preconditioning. Cell Death Dis. 2010;1:e22. doi: 10.1038/cddis.2009.22.] [[Google Scholar]
  • 64. Wei L, Fraser JL, Lu ZY, Hu X, Yu SPTransplantation of hypoxia preconditioned bone marrow mesenchymal stem cells enhances angiogenesis and neurogenesis after cerebral ischemia in rats. Neurobiol Dis. 2012;46:635–645. doi: 10.1016/j.nbd.2012.03.002.] [[Google Scholar]
  • 65. Wang Y, Huang J, Li Y, Yang GYRoles of chemokine CXCL12 and its receptors in ischemic stroke. Curr Drug Targets. 2012;13:166–172. doi: 10.2174/138945012799201603.] [[PubMed][Google Scholar]
  • 66. Wang Y, Deng Y, Zhou GQSDF-1alpha/CXCR4-mediated migration of systemically transplanted bone marrow stromal cells towards ischemic brain lesion in a rat model. Brain Res. 2008;1195:104–112. doi: 10.1016/j.brainres.2007.11.068.] [[PubMed][Google Scholar]
  • 67. Chen J, Li Y, Wang L, Lu M, Chopp MCaspase inhibition by Z-VAD increases the survival of grafted bone marrow cells and improves functional outcome after MCAo in rats. J Neurol Sci. 2002;199:17–24. doi: 10.1016/S0022-510X(02)00075-8.] [[PubMed][Google Scholar]
  • 68. Cui X, Chen J, Zacharek A, Li Y, Roberts C, Kapke A, et al Nitric oxide donor upregulation of stromal cell-derived factor-1/chemokine (CXC motif) receptor 4 enhances bone marrow stromal cell migration into ischemic brain after stroke. Stem Cells. 2007;25:2777–2785. doi: 10.1634/stemcells.2007-0169.] [[Google Scholar]
  • 69. Cui X, Chen J, Zacharek A, Roberts C, Savant-Bhonsale S, Chopp MTreatment of stroke with (Z)-1-[N-(2-aminoethyl)-N-(2-ammonioethyl) amino] diazen-1-ium-1, 2-diolate and bone marrow stromal cells upregulates angiopoietin-1/Tie2 and enhances neovascularization. Neuroscience. 2008;156:155–164. doi: 10.1016/j.neuroscience.2008.07.019.] [[Google Scholar]
  • 70. Shyu WC, Lin SZ, Yen PS, Su CY, Chen DC, Wang HJ, et al Stromal cell-derived factor-1 alpha promotes neuroprotection, angiogenesis, and mobilization/homing of bone marrow-derived cells in stroke rats. J Pharmacol Exp Ther. 2008;324:834–849. doi: 10.1124/jpet.107.127746.] [[PubMed][Google Scholar]
  • 71. Zhao Y, Guan Y, Xu Y, Li Y, Wu WSodium Ferulate combined with bone marrow stromal cell treatment ameliorating rat brain ischemic injury after stroke. Brain Res. 2012;1450:157–165. doi: 10.1016/j.brainres.2012.02.053.] [[PubMed][Google Scholar]
  • 72. Osanai T, Kuroda S, Yasuda H, Chiba Y, Maruichi K, Hokari M, et al Noninvasive transplantation of bone marrow stromal cells for ischemic stroke: preliminary study with a thermoreversible gelation polymer hydrogel. Neurosurgery. 2010;66:1140–1147. doi: 10.1227/01.NEU.0000369610.76181.CF.] [[PubMed][Google Scholar]
  • 73. Pirzad Jahromi G, Seidi S, Sadr SS, Shabanzadeh AP, Keshavarz M, Kaka GR, et al Therapeutic effects of a combinatorial treatment of simvastatin and bone marrow stromal cells on experimental embolic stroke. Basic Clin Pharmacol Toxicol. 2012;110:487–493. doi: 10.1111/j.1742-7843.2011.00848.x.] [[PubMed][Google Scholar]
  • 74. Bang OY, Lee JS, Lee PH, Lee GAutologous mesenchymal stem cell transplantation in stroke patients. Ann Neurol. 2005;57:874–882. doi: 10.1002/ana.20501.] [[PubMed][Google Scholar]
  • 75. Lee JS, Hong JM, Moon GJ, Lee PH, Ahn YH, Bang OYA long-term follow-up study of intravenous autologous mesenchymal stem cell transplantation in patients with ischemic stroke. Stem Cells. 2010;28:1099–1106. doi: 10.1002/stem.430.] [[PubMed][Google Scholar]
  • 76. Kondziolka D, Steinberg GK, Wechsler L, Meltzer CC, Elder E, Gebel J, et al Neurotransplantation for patients with subcortical motor stroke: a phase 2 randomized trial. J Neurosurg. 2005;103:38–45. doi: 10.3171/jns.2005.103.1.0038.] [[PubMed][Google Scholar]
  • 77. Battistella V, de Freitas GR, da Fonseca LM, Mercante D, Gutfilen B, Goldenberg RC, et al Safety of autologous bone marrow mononuclear cell transplantation in patients with nonacute ischemic stroke. Regen Med. 2011;6:45–52. doi: 10.2217/rme.10.97.] [[PubMed][Google Scholar]
  • 78. Moniche F, Gonzalez A, Gonzalez-Marcos JR, Carmona M, Pinero P, Espigado I, et al Intra-arterial bone marrow mononuclear cells in ischemic stroke: a pilot clinical trial. Stroke. 2012;43:2242–2244. doi: 10.1161/STROKEAHA.112.659409.] [[PubMed][Google Scholar]
  • 79. Friedrich MA, Martins MP, Araujo MD, Klamt C, Vedolin L, Garicochea B, et al Intra-arterial infusion of autologous bone marrow mononuclear cells in patients with moderate to severe middle cerebral artery acute ischemic stroke. Cell Transplant. 2012;21(Suppl1):S13–21. doi: 10.3727/096368912X612512.] [[PubMed][Google Scholar]
Collaboration tool especially designed for Life Science professionals.Drag-and-drop any entity to your messages.