Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(203)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Carcinogenesis
September/22/1999
Abstract
Some flavonoids are ligands of the aryl hydrocarbon receptor (AHR) and cause cell cycle arrest. The dependency of the cytostatic effects of five flavonoids (flavone, alpha-naphthoflavone, apigenin, 3'-methoxy-4'-nitroflavone and 2'-amino-3'-methoxyflavone) on a functional AHR was examined in AHR-containing rat hepatoma 5L cells and an AHR-deficient cell line (BP8) derived from the 5L line. The potent AHR ligand 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) was cytostatic to the 5L line due to the induction of a G(1) arrest and dramatically elevated steady-state levels of CYP1A1 mRNA. TCDD affected neither the proliferation nor CYP1A1 mRNA contents of BP8 cells. With the exception of apigenin, the flavonoids under study induced G(1) arrest in both 5L and BP8 cells when used at concentrations at which they functioned as AHR agonists, but not antagonists. Apigenin-treated 5L and BP8 cultures primarily arrested in G(2)/M. The AHR-containing murine hepatoma cell line 1c1c7 arrested following exposure to AHR agonist concentrations of flavone and alpha-naphthoflavone, but not TCDD. Unlike the G(1) arrest observed in 5L cultures, the latter two flavonoids caused principally G(2)/M arrest in 1c1c7 cells. These studies demonstrate that the cytostatic activities of flavonoids do not require the AHR and the site of checkpoint arrest with a specific flavonoid can vary with cell type.
Publication
Journal: Life Sciences
March/7/2005
Abstract
Apigenin is a widely distributed plant flavonoid and was proposed as an antitumor agent. In this study, we reported for the first time that apigenin inhibited the growth of human cervical carcinoma cells (HeLa) and through apoptotic pathway. The results showed that apigenin significantly decreased the viability of HeLa cells at 37-74 microM and the IC50 value was 35.89 microM. Apigenin-induced apoptosis in HeLa cells was confirmed by DNA fragmentation assay and induction of sub-G1 phase by flow cytometry. Apigenin-treated HeLa cells were arrested at G1 phase, which was associated with a marked increment of the expression of p21/WAF1 protein. The induction of p21/WAF1 appeared to be transcriptionally upregulated and was p53-dependent. In addition, apigenin induced Fas/APO-1 and caspase-3 expression which were also correlated with apoptosis. Apigenin decreased in the protein expression of Bcl-2 protein, which is an anti-apoptotic factor. The conclusion of this study is the apigenin induced p53 expression which caused cell cycle arrest and apoptosis. These findings suggest that apigenin has strong potential for development as an agent for preventing cervical cancer.
Publication
Journal: Planta Medica
April/19/2009
Abstract
Scutellaria is a traditional herbal remedy with potential anti-cancer activity. The purpose of this study was to evaluate anticancer mechanisms of thirteen Scutellaria species and analyze their leaf, stem and root extracts for levels of common biologically active flavonoids: apigenin, baicalein, baicalin, chrysin, scutellarein, and wogonin. Malignant glioma, breast carcinoma and prostate cancer cells were used to determine tumor-specific effects of Scutellaria on cell proliferation, apoptosis and cell cycle progression, via the MTT assay and flow cytometry-based apoptosis and cell cycle analysis. The extracts and individual flavonoids inhibited the proliferation of malignant glioma and breast carcinoma cells without affecting primary or non-malignant cells. The flavonoids exhibited different mechanisms of anti-tumor activity as well as positive interactions. The antitumor mechanisms involved induction of apoptosis and cell cycle arrest at G1/G2. Of the extracts tested, leaf extracts of S. angulosa, S. integrifolia, S. ocmulgee and S. scandens were found to have strong anticancer activity. This study provides basis for further mechanistic and translational studies into adjuvant therapy of malignant tumors using Scutellaria leaf tissues.
Publication
Journal: Nutrition and Cancer
January/23/2002
Abstract
The present studies compared the effects of selected bioflavonoids on the proliferation of androgen-independent human prostatic tumor cells (PC-3). Complete growth retardation was observed in PC-3 cells treated with 100 microM quercetin, kaempferol, and luteolin, while isomolar genistein, apigenin, and myricetin suppressed PC-3 proliferation by 73%, 70%, and 59%, respectively (p < 0.05). Naringenin and rutin were not as effective and inhibited growth by < 25%. Exposure to increasing concentrations of quercetin and kaempferol led to a dose-dependent decrease in proliferation. Refeeding kaempferol-treated cells (50 microM) complete medium without the flavonoid resulted in a return toward control growth rates. Similar growth recovery was not observed in quercetin-treated cells. The antiproliferative response of PC-3 cells to quercetin and kaempferol was additive when supplemented to the medium at 25 microM. A block in G2-to-M phase progression was observed after the addition of 25 microM kaempferol. When quercetin reached 100 microM, an increase in the proportion of cells in the S phase became apparent within 24 hours. Apoptosis was not evident, even when concentrations of quercetin or kaempferol were raised to 100 microM. The present studies suggest that alterations in cell cycle progression contribute significantly to the antiproliferative effects of quercetin and kaempferol in PC-3 cells.
Publication
Journal: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
October/9/2018
Abstract
Apigenin is a dietary flavonoid with known antioxidant and antitumor effects against several types of cancers by promoting cell death and inducing cell cycle arrest. Apigenin also regulates a variety of intracellular signal transduction pathways during apoptosis or autophagy. However, the precise mechanism underlying the anticancer effects of apigenin in liver cancer remains poorly understood. In this study, we demonstrated that apigenin has anticancer activity against hepatocellular carcinoma cells. Apigenin inhibited the cell growth and induced cell death in a dose- and time-dependent manner in HepG2 cells. We found that apigenin treatment increased the expression of LC3-II and the number of GFP-LC3 puncta. Moreover, inhibition of autophagy with 3-MA and Atg5 gene silencing strengthened apigenin-induced proliferation inhibition and apoptosis. Our data has indicated that apigenin-induced autophagy has a protective effect against cell death. Additionally, apigenin induced apoptosis and autophagy through inhibition of PI3K/Akt/mTOR pathway. Most importantly, in vivo data showed that administration of apigenin decreased tumor growth and autophagy inhibition by 3-MA significantly enhanced the anticancer effect of apigenin. Collectively, our results reveal that apigenin inhibits cell proliferation and induces autophagy via suppressing the PI3K/Akt/mTOR pathway. Our results also suggest combination of autophagy inhibitors and apigenin would be a potential chemotherapeutic strategy against hepatocellular carcinoma.
Publication
Journal: International Journal of Oncology
May/1/2005
Abstract
Apigenin, a common dietary flavonoid, has been shown to induce cell growth-inhibition and cell cycle arrest in many cancer cell lines. One important effect of apigenin is to increase the stability of the tumor suppressor p53 in normal cells. Therefore, apigenin is expected to play a large role in cancer prevention by modifying the effects of p53 protein. However, the mechanisms of apigenin's effects on p53-mutant cancer cells have not been revealed yet. We assessed the influence of apigenin on cell growth and the cell cycle in p53-mutant cell lines. Treatment with apigenin resulted in growth-inhibition and G2/M phase arrest in two p53-mutant cancer cell lines, HT-29 and MG63. These effects were associated with a marked increase in the protein expression of p21/WAF1. We have shown that p21/WAF1 mRNA expression was also markedly increased by treatment with apigenin in a dose- and time-dependent manner. However, we could not detect p21/WAF1 promoter activity following treatment with apigenin. Similarly, promoter activity from pG13-Luc, a p53-responsive promoter plasmid, was not activated by treatment with apigenin with or without p53 protein expression. These results suggest that there is a p53-independent pathway for apigenin in p53-mutant cell lines, which induces p21/WAF1 expression and growth-inhibition. Apigenin may be a useful chemopreventive agent not only in wild-type p53 status, but also in cancer with mutant p53.
Publication
Journal: Molecular Carcinogenesis
July/22/1997
Abstract
Apigenin is a plant flavonoid that has been shown to significantly inhibit ultraviolet-induced mouse skin tumorigenesis when applied topically and may be an alternative sunscreen agent for humans. A long-term goal of our laboratory is to elucidate the molecular mechanism or mechanism by which apigenin inhibits skin tumorigenesis. In a previous publication, we characterized the mechanism by which apigenin induced G2/M arrest in keratinocytes. More recent studies in our laboratory have provided evidence that apigenin can induce G1 arrest in addition to arresting cells at G2/M. Here we describe the mechanism of the apigenin-induced G1 arrest in human diploid fibroblasts (HDF). Treatment of asynchronous HDF for 24 h with 10-50 microM apigenin resulted in dose-dependent cell-cycle arrest at both the G0/G1 and G2/M phases as measured by flow cytometry. The G0/G1 arrest was more clearly defined by using HDF that were synchronized in G0 and then released from quiescence by replating at subconfluent densities in medium containing 10-70 microM apigenin. The cells were analyzed for cell-cycle progression or cyclin D1 expression 24 h later. A dose of apigenin as low as 10 microM reduced the percentage of cells in S phase by 20% compared with control cultures treated with solvent alone. Western blot analysis of apigenin-treated HDF indicated that cyclin D1 was expressed at higher levels than in untreated cells, which signifies that they were arrested in G1 phase rather than in a G0 quiescent state. The G1 arrest was further studied by cyclin-dependent kinase 2 (cdk2) immune complex-kinase assays of apigenin-treated asynchronous HDF, which demonstrated a dose-dependent inhibition of cdk2 by apigenin. Inhibition of cdk2 kinase activity in apigenin-treated cells was associated with the accumulation of the hypophosphorylated form of the retinoblastoma (Rb) protein as measured by western blot analysis. The cdk inhibitor p21/WAF1 was also induced in a dose-dependent manner, with a 22-fold induction of p21/WAF1 in 70 microM apigenin-treated cells. In conclusion, apigenin treatment produced a G1 cell-cycle arrest by inhibiting cdk2 kinase activity and the phosphorylation of Rb and inducing the cdk inhibitor p21/WAF1, all of which may mediate its chemopreventive activities in vivo. To our knowledge this is the first report of a chemopreventive agent inducing p21/WAF1, a known downstream effector of the p53 tumor suppressor protein.
Publication
Journal: Molecular Carcinogenesis
March/9/2004
Abstract
Development of effective agents for treatment of hormone-refractory prostate cancer has become a national medical priority. We have reported recently that apigenin (4',5,7-trihydroxyflavone), found in many common fruits and vegetables, has shown remarkable effects in inhibiting cell growth and inducing apoptosis in many human prostate carcinoma cells. Here we demonstrate the molecular mechanism of inhibitory action of apigenin on androgen-refractory human prostate carcinoma DU145 cells that have mutations in the tumor suppressor gene p53 and pRb. Treatment of cells with apigenin resulted in a dose- and time-dependent inhibition of growth, colony formation, and G1 phase arrest of the cell cycle. This effect was associated with a marked decrease in the protein expression of cyclin D1, D2, and E and their activating partner, cyclin-dependent kinase (cdk)2, 4, and 6, with concomitant upregulation of WAF1/p21, KIP1/p27, INK4a/p16, and INK4c/p18. The induction of WAF1/p21 and its growth inhibitory effects by apigenin appears to be independent of p53 and pRb status of these cells. Apigenin treatment also resulted in alteration in Bax/Bcl2 ratio in favor of apoptosis, which was associated with the release of cytochrome c and induction of apoptotic protease-activating factor-1 (Apaf-1). This effect was found to result in a significant increase in cleaved fragments of caspase-9, -3, and poly(ADP-ribose) polymerase (PARP). Further, apigenin treatment resulted in downmodulation of the constitutive expression of nuclear factor-kappaB (NF-kappaB)/p65 and NF-kappaB/p50 in the nuclear fraction that correlated with an increase in the expression of IkappaB-alpha (IkappaBalpha) in the cytosol. Taken together, we concluded that molecular mechanisms during apigenin-mediated growth inhibition and induction of apoptosis in DU145 cells was due to (1) modulation in cell-cycle machinery, (2) disruption of mitochondrial function, and (3) NF-kappaB inhibition.
Publication
Journal: Biochimica et Biophysica Acta - General Subjects
November/25/2012
Abstract
BACKGROUND
Apigenin, a natural plant flavone, may have chemopreventive and therapeutic potentials for anti-inflammatory, antioxidant, and anti-cancer. Nevertheless, the anti-tumor effect of apigenin on human head and neck squamous cell carcinoma (HNSCC) is not fully understood.
METHODS
The antioxidant capacity and protective effects of apigenin against oxidative stress in murine normal embryonic liver BNLCL2 cells are examined. Cell viability, morphologic change, clonogenic survival, cell cycle distribution, reactive oxygen species (ROS) production, glutathione formation, and death receptors- and Bcl-2-mediated caspase pathways of HNSCC SCC25 cells and A431 cells with apigenin are investigated.
RESULTS
Apigenin inhibits the growth of SCC25 and A431 cells and induces cell cycle arrest in the G2/M phase. Apigenin has an antioxidant capacity as well as the ability to inhibit lipid peroxidation. It protects BNLCL2 cells against oxidative damage, and is potentially able to prevent cancer. Apigenin increases intracellular ROS levels and reduces levels of glutathione; it also induces cell apoptosis via tumor necrosis factor receptor (TNF-R)-, TNF-related apoptosis-inducing ligand receptor (TRAIL-R)-, and Bcl-2-mediated caspase-dependent cell death pathways in SCC25 cells. The combination of apigenin with 5-fluorouracil (5-Fu) or cisplatin induces the dramatic death of SCC25 cells.
CONCLUSIONS
Apigenin induces SCC25 cell apoptosis via the up-regulation of both TNF-R and TRAIL-R signaling pathways, and has a synergistic effect on the inhibition of cell proliferation in combination with 5-Fu or cisplatin.
CONCLUSIONS
These analytical findings suggest that apigenin may be a good therapeutic agent against HNSCC cells.
Publication
Journal: Nutrition and Cancer
May/8/2002
Abstract
Apigenin is a widely distributed plant flavonoid and was proposed as an antitumor agent. In this study, we investigated the apigenin effects on the protease-mediated invasiveness in an estrogen-insensitive breast tumor cell line MDA-MB231. The results show that apigenin at 22.8-45.5 microM (2.5-10 micrograms/ml) strongly inhibited, in a dose-dependent manner, tumor cell invasion through Matrigel, cell migration, and cell proliferation. We show that apigenin treatment from 22.8 microM (2.5 micrograms/ml) led to a partial decrease in urokinase-plasminogen activator expression and to a total inhibition of phorbol 12-myristate 13-acetate-induced matrix metalloproteinase-9 secretion. We also demonstrate in the apigenin-treated cells a defective adhesion to Matrigel and a G2-M cell cycle arrest. Taken together, our results demonstrate that apigenin is a pleiotropic effector affecting protease-dependent invasiveness and associated processes and proliferation of tumor cells.
Publication
Journal: Carcinogenesis
January/26/1997
Abstract
Apigenin is a plant flavonoid which has been shown to significantly inhibit UV-induced mouse skin tumorigenesis when applied topically, and may represent an alternative sunscreen agent in humans. We have investigated the molecular mechanism(s) by which apigenin inhibits skin tumorigenesis. Initial studies examined the effects of apigenin on the cell cycle. DNA flow cytometric analysis indicated that culturing cells for 24 h in medium containing apigenin induced a G2/M arrest in two mouse skin derived cell lines, C50 and 308, as well as in human HL-60 cells. The G2/M arrest was fully reversible after an additional 24 h in medium without apigenin. We investigated the effects of apigenin on cyclin B1 and p34cdc2, since cyclin B1/p34cdc2 complexes regulate G2/M progression. Western blot and immune complex kinase assays using whole cell lysates from 308 and C50 cells treated for 24 h with 0-70 microM doses of apigenin demonstrated that apigenin treatment did not change the steady-state level of p34cdc2 protein, but did inhibit p34cdc2 H1 kinase activity in 308 cells. Western blot analysis showed that apigenin treatment of C50 cells and 308 cells inhibited the accumulation of cyclin B1 protein in a dose-dependent manner. The apigenin levels detected in cultured keratinocytes were relevant to those detected in epidermal cells of Sencar mice treated with tumor inhibitory doses of apigenin. In conclusion, we present evidence that apigenin induces a reversible G2/M arrest in cultured keratinocytes, the mechanism of which is in part due to inhibition of the mitotic kinase activity of p34cd2, and perturbation of cyclin B1 levels.
Publication
Journal: BMC Cancer
August/30/2016
Abstract
BACKGROUND
Flavones found in plants display various biological activities, including anti-allergic, anti-viral, anti-inflammatory, anti-oxidation, and anti-tumor effects. In this study, we investigated the anti-tumor effects of flavone, apigenin and luteolin on human breast cancer cells.
METHODS
The anti-cancer activity of flavone, apigenin and luteolin was investigated using the MTS assay. Apoptosis was analyzed by Hoechst 33342 staining, flow cytometry and western blot. Cell migration was determined using the culture inserts and xCELLigence real-time cell analyzer instrument equipped with a CIM-plate 16. Real-time quantitative PCR and western blot were used to determine the signaling pathway elicited by flavone, apigenin and luteolin.
RESULTS
Flavone, apigenin and luteolin showed potent inhibitory effects on the proliferation of Hs578T, MDA-MB-231 and MCF-7 breast cancer cells in a concentration and time-dependent manner. The ability of flavone, apigenin and luteolin to inhibit the growth of breast cancer cells through apoptosis was confirmed by Hoechst33342 staining and the induction of sub-G1 phase of the cell cycle. Flavone, apigenin and luteolin induced forkhead box O3 (FOXO3a) expression by inhibiting Phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB)/Akt. This subsequently elevated the expression of FOXO3a target genes, including the Cyclin-dependent kinase inhibitors p21Cip1 (p21) and p27kip1 (p27), which increased the levels of activated poly(ADP) polymerase (PARP) and cytochrome c.
CONCLUSIONS
Taken together, these data demonstrated that flavone, apigenin and luteolin induced cell cycle arrest and apoptosis in breast cancer cells through inhibiting PI3K/Akt activation and increasing FOXO3a activation, which suggest that flavone, apigenin and luteolin will be the potential leads for the preventing and treating of breast cancer.
Publication
Journal: Nutrition and Cancer
December/1/2004
Abstract
Apigenin has been previously shown to induce G2/M cell-cycle arrest in human colon cancer cell lines. The present study assessed the individual and interactive influence of seven apigenin analogs on cell cycle, cell number, and cell viability in human SW480 and Caco-2 colonic carcinoma cells. Cellular concentration of selected apigenin analogs was further assessed by high-performance liquid chromatography to assess cellular availability. The apigenin analogs studied were acacetin, chrysin, kampherol, luteolin, myricetin, naringenin, and quercetin. DNA flow cytometric analysis indicated that treatment with either chrysin or acacetin at 0 to 80 microM for 48 h resulted in cell-cycle arrest at the G2/M phase in a dose-dependent manner in the SW480 cells but not in the Caco-2 cells. The percentage of SW480 cells at G2/M also increased when cells were treated with kampherol, luteolin, or quercetin between 5 and 30 microM, but the percentage of cells in G2/M decreased at doses greater than 40 microM. Cell number was significantly decreased in a time- and dose-dependent manner following the treatments with each analog except for naringenin and myricetin. The interactive effects of these analogs with apigenin were further assessed by combining each analog at doses from 0 to 80 microM with apigenin at 20 microM, a dose at which apigenin was found to double the proportion of SW480 cells in G2/M. When either acacetin, chrysin, luteolin, kampherol, or quercetin at doses between 5 and 30 microM were combined with apigenin at 20 microM, there was an increase of 22% in the proportion of G2/M cells over that observed with 20 microM apigenin alone (P < 0.05). At doses higher than 40 microM, however, the interaction became antagonistic, and the proportion of cells in G2/M decreased below that observed with apigenin alone. Cell viability, as assessed by Trypan blue exclusion assay, significantly decreased by treatments with high doses of each agent or each agent combined with apigenin. Cellular concentration of apigenin, chrysin, or naringenin in SW480 cells significantly increased at doses of 40 microM or greater, but it was not correlated with their impact on G2/M cell-cycle arrest. The induction of cell-cycle arrest by five of seven tested apigenin analogs and the additive induction by the combination of flavonoids at low doses suggest that apigenin-related flavonoids may cooperatively protect against colorectal cancer through conjoint blocking of cell-cycle progression.
Publication
Journal: Biochemical Pharmacology
January/4/2004
Abstract
Flavonoids (FVs) are an important class of plant compounds postulated to be one of the constituents responsible for the beneficial effects of fruits and vegetables on health, including heart disease and cancer. At pharmacological levels, various naturally-occurring flavonoids have been shown to be cancer-protective in a variety of animal models and flavonoid derivatives, such as flavopyridol, are being assessed as chemotherapy drugs in clinical trials. This report has investigated the effects of the most common dietary FVs on several major signalling pathways in biopsies of human epithelial cells using primary cultures freshly isolated from biopsies and has obtained evidence for the previously unrecognised importance of stress kinase responses induced by kaempferol (KF), apigenin (AP) and luteolin (LU). KF, AP and LU all activated ATM/ATR (mutated in ataxia-telangiectasia and related) kinases and the p38 stress kinase and this was associated with induction of GADD45 and cell cycle arrest in G2, but not induction of apoptosis. These effects were not due to general toxicity since they were reversible on removal of FV. The inductions of ATM/ATR and p38 were functionally important since caffeine, an inhibitor of ATM/ATR, and the p38-specific inhibitor, SB203580, prevented induction of GADD45 and growth arrest by these three flavonoids. In contrast, although quercetin (QU) activated ATM (but not ATR), it did not activate p38 kinase, GADD45 or p53. QU may interfere with one of the lipoxygenase (LOX) pathways since the growth inhibitory effects of QU (but not the other three flavonoids) could be reversed by addition of LOX metabolites, particularly 12- and 15-hydroxyeicostetraenic acids.
Publication
Journal: Molecular Nutrition and Food Research
May/31/2017
Abstract
Flavonoids are becoming popular nutraceuticals. Different flavonoids show similar or distinct biological effects on different tissues or cell types, which may limit or define their usefulness in cancer prevention and/or treatment application. This review focuses on a few selected flavonoids and discusses their functions in normal and transformed pigment cells, including cyanidin, apigenin, genistein, fisetin, EGCG, luteolin, baicalein, quercetin and kaempferol. Flavonoids exhibit melanogenic or anti-melanogenic effects mainly via transcriptional factor MiTF and/or the melanogenesis enzymes tyrosinase, DCT or TYRP-1. To identify a direct target has been a challenge as most studies were not able to discriminate whether the effect(s) of the flavonoid were from direct targeting or represented indirect effects. Flavonoids exhibit an anti-melanoma effect via inhibiting cell proliferation and invasion and inducing apoptosis. The mechanisms are also multi-fold, via ROS-scavenging, immune-modulation, cell cycle regulation and epigenetic modification including DNA methylation and histone deacetylation. In summary, although many flavonoid compounds are extremely promising nutraceuticals, their detailed molecular mechanism and their multi-target (simultaneously targeting multiple molecules) nature warrant further investigation before advancement to translational studies or clinical trials.
Publication
Journal: European Journal of Cancer
May/8/2011
Abstract
Persuasive epidemiological and experimental evidence suggests that dietary flavonoids have anti-cancer activity. Since conventional therapeutic and surgical approaches have not been able to fully control the incidence and outcome of most cancer types, including colorectal neoplasia, there is an urgent need to develop alternative approaches for the management of cancer. We sought to develop the best flavonoids for the inhibition of cell growth, and apigenin (flavone) proved to be the most promising compound in colorectal cancer cell growth arrest. Subsequently, we found that pro-apoptotic proteins (NAG-1 and p53) and cell cycle inhibitor (p21) were induced in the presence of apigenin, and kinase pathways, including PKCδ and ataxia telangiectasia mutated (ATM), play an important role in activating these proteins. The data generated by in vitro experiments were confirmed in an animal study using APC(MIN+) mice. Apigenin is able to reduce polyp numbers, accompanied by increasing p53 activation through phosphorylation in animal models. Our data suggest apparent beneficial effects of apigenin on colon cancer.
Publication
Journal: Molecular Carcinogenesis
September/22/2005
Abstract
Apigenin (4',5,7-trihydroxyflavone), a flavone subclass of flavonoid widely distributed in many herbs, fruits, and vegetables is a substantial component of the human diet and has been shown to possess a variety of biological activities including tumor growth inhibition and chemoprevention. Recent studies in several biological systems have shown that apigenin induces tumor growth inhibition, cell cycle arrest, and apoptosis. Free radical-induced degradation of polyunsaturated fatty acid results in electrophilic products and causes severe oxidative stress. Oxidative stress induced by free radicals, nonoxidizing species, electrophiles, and associated DNA damages have been frequently coupled with carcinogenesis. In the present study, the protective role of apigenin was examined against the oxidative stress caused by N-nitrosodiethylamine (NDEA) and phenobarbital (PB) in Wistar albino rats. Oxidative stress was measured in terms of lipid peroxidation (LPO) and protein carbonyl formation. Oxidative stress-induced DNA damage was measured by single cell gel electrophoresis (comet assay). Apigenin exhibited its antioxidant defense against NDEA-induced oxidative stress. We have observed minimal levels of LPO and DNA damage in apigenin-treated hepatoma bearing animals. Based on the results, we suggest that apigenin may be developed as a promising chemotherapeutic agent against the development of chemical carcinogenesis.
Publication
Journal: Journal of cancer prevention
August/15/2017
Abstract
Apigenin (4',5,7-trihydroxyflavone) is a flavonoid commonly found in many fruits and vegetables such as parsley, chamomile, celery, and kumquats. In the last few decades, recognition of apigenin as a cancer chemopreventive agent has increased. Significant progress has been made in studying the chemopreventive aspects of apigenin both in vitro and in vivo. Several studies have demonstrated that the anticarcinogenic properties of apigenin occur through regulation of cellular response to oxidative stress and DNA damage, suppression of inflammation and angiogenesis, retardation of cell proliferation, and induction of autophagy and apoptosis. One of the most well-recognized mechanisms of apigenin is the capability to promote cell cycle arrest and induction of apoptosis through the p53-related pathway. A further role of apigenin in chemoprevention is the induction of autophagy in several human cancer cell lines. In this review, we discuss the details of apigenin, apoptosis, autophagy, and the role of apigenin in cancer chemoprevention via the induction of apoptosis and autophagy.
Publication
Journal: Journal of Nutritional Biochemistry
July/23/2009
Abstract
We studied the effects of apigenin on the cell cycle distribution and apoptosis of human breast cancer cells and explored the mechanisms underlying these effects. We first investigated the antiproliferative effects in SK-BR-3 cells exposed to between 1 and 100 microM apigenin for 24, 48 and 72 h. Apigenin significantly inhibited cell proliferation at concentrations over 50 microM, regardless of exposure time (P<.05), and resulted in significant cell cycle arrest in the G(2)/M phase after 48 h of treatment at high concentrations (50 and 100 microM; P<.05). To investigate the regulatory proteins of cell cycle arrest affected by apigenin, we treated cells with 50 and 100 microM apigenin for 72 h. Apigenin caused a slight decrease in cyclin D and cyclin E expression, with no change in CDK2 and CDK4. In addition, the apigenin-induced accumulation of the cell population in the G(2)/M phase resulted in a decrease in CDK1 together with cyclin A and cyclin B. In an additional study, apigenin also increased the accumulation of p53 and further enhanced the level of p21(Cip1), with no change in p27(Kip1). The expression of Bax and cytochrome c of p53 downstream target was increased markedly at high concentration treatment over 50 microM apigenin. Based on our findings, the mechanism by which apigenin causes cell cycle arrest via the regulation of CDK1 and p21(Cip1) and induction of apoptosis seems to be involved in the p53-dependent pathway.
Publication
Journal: FASEB Journal
February/26/2006
Abstract
Epidemiological studies suggest that increased intake of fruits and vegetables may be associated with a reduced risk of prostate cancer. Apigenin (4', 5, 7,-trihydroxyflavone), a common dietary flavonoid abundantly present in fruits and vegetables, has shown remarkable anti-proliferative effects against various malignant cell lines. However, the mechanisms underlying these effects remain to be elucidated. We investigated the in vivo growth inhibitory effects of apigenin on androgen-sensitive human prostate carcinoma 22Rv1 tumor xenograft subcutaneously implanted in athymic male nude mice. Apigenin was administered to mice by gavage at doses of 20 and 50 mug/mouse/day in 0.2 ml of a vehicle containing 0.5% methyl cellulose and 0.025% Tween 20 in two different protocols. In the first protocol, apigenin was administered for 2 wk before inoculation of tumor and was continued for 8 wk, resulting in significant inhibition of tumor volume by 44 and 59% (P<0.002 and 0.0001), and wet weight of tumor by 41 and 53% (P<0.05), respectively. In the second protocol, administration of apigenin began 2 wk after tumor inoculation and continued for 8 wk; tumor volume and wet weights of tumor were reduced by 39 and 53% (P<0.01 and 0.002) and 31 and 42% (P<0.05), respectively. The tumor inhibitory effect of apigenin was more pronounced in the first protocol of extended treatment, which was associated with increased accumulation of human IGFBP-3 in mouse serum along with significant increase in IGFBP-3 mRNA and protein expression in tumor xenograft. Apigenin intake by these mice also resulted in simultaneous decrease in serum IGF-I levels and induction of apoptosis in tumor xenograft. Importantly, tumor growth inhibition, induction of apoptosis, and accumulation of IGFBP-3 correlated with increasing serum and tumor apigenin levels. In both studies, animals did not exhibit any signs of toxicity or reduced food consumption. In cell culture studies, apigenin treatment resulted in cell growth inhibition and induction of apoptosis, which correlated with increased accumulation of IGFBP-3 in culture medium and cell lysate. These effects were associated with significant reduction in IGF-I secretion; inhibition of IGF-I-induced cell cycle progression and insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation, along with an increase in sub-G1 peak by apigenin. Further, treatment of cells with IGFBP-3 antisense oligonucleotide reversed these effects and attenuated apigenin-mediated inhibition of IRS-1 phosphorylation conferring inhibitory effects of apigenin on IGF-signaling. This study presents the first evidence that the in vitro and in vivo growth inhibitory effects of apigenin involve modulation of IGF-axis signaling in prostate cancer.
Publication
Journal: Cancer Cell International
April/9/2015
Abstract
BACKGROUND
Apigenin is a nontoxic dietary flavonoid, and it may have chemopreventive and therapeutic potential as an anti-inflammatory, antioxidant, and anti-cancer agent. However, its role in bladder cancer remains poorly understood. The aim of this study was to investigate the anti-proliferative activity of apigenin in human bladder cancer T-24 cells.
RESULTS
Apigenin inhibited T-24 cell proliferation in a dose-dependent manner. We demonstrated that apigenin-induced early and mid-apoptotic cell could be identified by Annexnin V-Alexa Fluor 488/PI apoptosis detection and TUNEL assay. Moreover, using a JC-1 staining assay, we found that apigenin may induce the loss of the mitochondrial membrane potential. By performing flow cytometry and Western blotting, apigenin-mediated subG1 phase acculmulation was also associated with an increase in the phospho-p53, p53, p21, and p27 levels, and with a decrease in the Cyclin A, Cyclin B1, Cyclin E, CDK2, Cdc2, and Cdc25C levels, thereby blocking cell cycle progression. ELISA showed that the subG1 phase acculmulation was due to the increase in the p53, p21, and p27 levels. In addition, apigenin increased the Bax, Bad, and Bak levels, but reduced the Bcl-xL, Bcl-2, and Mcl-1 levels, and subsequently triggered the mitochondrial apoptotic pathway (release of cytochrome c and activation of caspase-9, caspase-3, caspase-7, and PARP). Further analysis demonstrated that apigenin increased the ROS levels and depleted GSH in T-24 cells at 12 h.
CONCLUSIONS
The results suggested that apigenin inhibits T-24 cells proliferation via blocking cell cycle progression and inducing apoptosis. In addition, we discovered a potential anticancer activity of apigenin against T-24 cells.
Publication
Journal: Food and Function
August/21/2016
Abstract
Apigenin, abundantly present in fruits and vegetables, is recognized as a flavonoid with anti-inflammatory, antioxidant and anticancer properties. In this study, we first investigated the anti-neoplastic effects of apigenin on papillary thyroid carcinoma (PTC) cell line BCPAP cells. Our results show that apigenin inhibited the viability of BCPAP cells in a dose-dependent manner. A large body of evidence demonstrates that autophagy contributes to cell death in certain contexts. In the present study, autophagy was induced by apigenin treatment in BCPAP cells, as evidenced by Beclin-1 accumulation, conversion of LC3 protein, p62 degradation as well as the significantly increased formation of acidic vesicular organelles (AVOs) compared to the control group. 3-MA, an autophagy inhibitor, rescued the cells from apigenin-induced cell death. Notably, apigenin enhanced production of reactive oxygen species (ROS), and subsequent induction of significant DNA damage as monitored by the TUNEL assay. In addition, apigenin treatment caused a significant accumulation of cells in the G2/M phase via down-regulation of Cdc25C expression. Our findings reveal that apigenin inhibits papillary thyroid cancer cell viability by the stimulation of reactive oxygen species (ROS) production, induction of DNA damage, leading to G2/M cell cycle arrest followed by autophagic cell death. Thus, our results provide new insights into the molecular mechanisms underlying apigenin-mediated autophagic cell death and suggest apigenin as a potential chemotherapeutic agent which is able to fight against papillary thyroid cancer.
Publication
Journal: Journal of Biological Chemistry
October/5/2004
Abstract
Activation of Ras promotes oncogenesis by altering a multiple of cellular processes, such as cell cycle progression, differentiation, and apoptosis. Oncogenic Ras can either promote or inhibit apoptosis, depending on the cell type and the nature of the apoptotic stimuli. The response of normal and transformed colonic epithelial cells to the short chain fatty acid butyrate, a physiological regulator of epithelial cell maturation, is also divergent: normal epithelial cells proliferate, and transformed cells undergo apoptosis in response to butyrate. To investigate the role of k-ras mutations in butyrate-induced apoptosis, we utilized HCT116 cells, which harbor an oncogenic k-ras mutation and two isogenic clones with targeted inactivation of the mutant k-ras allele, Hkh2, and Hke-3. We demonstrated that the targeted deletion of the mutant k-ras allele is sufficient to protect epithelial cells from butyrate-induced apoptosis. Consistent with this, we showed that apigenin, a dietary flavonoid that has been shown to inhibit Ras signaling and to reverse transformation of cancer cell lines, prevented butyrate-induced apoptosis in HCT116 cells. To investigate the mechanism whereby activated k-ras sensitizes colonic cells to butyrate, we performed a genome-wide analysis of Ras target genes in the isogenic cell lines HCT116, Hkh2, and Hke-3. The gene exhibiting the greatest down-regulation by the activating k-ras mutation was gelsolin, an actin-binding protein whose expression is frequently reduced or absent in colorectal cancer cell lines and primary tumors. We demonstrated that silencing of gelsolin expression by small interfering RNA sensitized cells to butyrate-induced apoptosis through amplification of the activation of caspase-9 and caspase-7. These data therefore demonstrate that gelsolin protects cells from butyrate-induced apoptosis and suggest that Ras promotes apoptosis, at least in part, through its ability to down-regulate the expression of gelsolin.
Publication
Journal: Journal of Korean Medical Science
May/21/2012
Abstract
Natural isoflavones and flavones are important dietary factors for prostate cancer prevention. We investigated the molecular mechanism of these compounds (genistein, biochanin-A and apigenin) in PC-3 (hormone-independent/p53 mutant type) and LNCaP (hormone-dependent/p53 wild type) prostate cancer cells. A cell growth rate and apoptotic activities were analyzed in different concentrations and exposure time to evaluate the antitumor activities of genistein, biochanin-A and apigenin. The real time PCR and Western blot analysis were performed to investigate whether the molecular mechanism of these compounds are involving the p21 and PLK-1 pathway. Apoptosis of prostate cancer cells was associated with p21 up-regulation and PLK-1 suppression. Exposure of genistein, biochanin-A and apigenin on LNCaP and PC-3 prostate cancer cells resulted in same pattern of cell cycle arrest and apoptosis. The inhibition effect for cell proliferation was slightly greater in LNCaP than PC-3 cells. In conclusion, flavonoids treatment induces up-regulation of p21 expression, and p21 inhibits transcription of PLK-1, which promotes apoptosis of cancer cells.
load more...