Best match
Only Free Articles
Search in:AllTitleAbstractAuthor name
Publications
(43)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Chinese Journal of Cancer Research
April/17/2013
Abstract
Apigenin (4',5,7-trihydroxyflavone) is a member of the flavone subclass of flavonoids present in fruits and vegetables. The involvement of autophagy in the apigenin-induced apoptotic death of human breast cancer cells was investigated. Cell proliferation and viability were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and clonogenic assays. Flow cytometry, fluorescent staining and Western blot analysis were employed to detect apoptosis and autophagy, and the role of autophagy was assessed using autophagy inhibitors. Apigenin dose- and time-dependently repressed the proliferation and clonogenic survival of the human breast cancer T47D and MDA-MB-231 cell lines. The death of T47D and MDA-MB-231 cells was due to apoptosis associated with increased levels of Caspase3, PARP cleavage and Bax/Bcl-2 ratios. The results from flow cytometry and fluorescent staining also verified the occurrence of apoptosis. In addition, the apigenin-treated cells exhibited autophagy, as characterized by the appearance of autophagosomes under fluorescence microscopy and the accumulation of acidic vesicular organelles (AVOs) by flow cytometry. Furthermore, the results of the Western blot analysis revealed that the level of LC3-II, the processed form of LC3-I, was increased. Treatment with the autophagy inhibitor, 3-methyladenine (3-MA), significantly enhanced the apoptosis induced by apigenin, which was accompanied by an increase in the level of PARP cleavage. Similar results were also confirmed by flow cytometry and fluorescence microscopy. These results indicate that apigenin has apoptosis- and autophagy-inducing effects in breast cancer cells. Autophagy plays a cyto-protective role in apigenin-induced apoptosis, and the combination of apigenin and an autophagy inhibitor may be a promising strategy for breast cancer control.
Publication
Journal: Acta Naturae
October/19/2015
Abstract
Phytoestrogens are a group of plant-derived compounds with an estrogen-like activity. In mammalians, phytoestrogens bind to the estrogen receptor (ER) and participate in the regulation of cell growth and gene transcription. There are several reports of the cytotoxic effects of phytoestrogens in different cancer cell lines. The aim of this study was to measure the phytoestrogen activity against breast cancer cells with different levels of ER expression and to elucidate the molecular pathways regulated by the leader compound. Methods used in the study include immunoblotting, transfection with a luciferase reporter vector, and a MTT test. We demonstrated the absence of a significant difference between ER+ and ER- breast cancer cell lines in their response to cytotoxic stimuli: treatment with high doses of phytoestrogens (apigenin, genistein, quercetin, naringenin) had the same efficiency in ER-positive and ER-negative cells. Incubation of breast cancer cells with apigenin revealed the highest cytotoxicity of this compound; on the contrary, naringenin treatment resulted in a low cytotoxic activity. It was shown that high doses of apigenin (50 μM) do not display estrogen-like activity and can suppress ER activation by 17β-estradiol. Cultivation of HER2-positive breast cancer SKBR3 cells in the presence of apigenin resulted in a decrease in HER2/neu expression, accompanied by cleavage of an apoptosis substrate PARP. Therefore, the cytotoxic effects of phytoestrogens are not associated with the steroid receptors of breast cancer cells. Apigenin was found to be the most effective phytoestrogen that strongly inhibits the growth of breast cancer cells, including HER2-positive ones.
Publication
Journal: GeroScience
July/9/2017
Abstract
Apigenin (4',5,7,-trihydroxyflavone) is a flavonoid found in certain herbs, fruits, and vegetables. Apigenin can attenuate inflammation, which is associated with many chronic diseases of aging. Senescent cells-stressed cells that accumulate with age in mammals-display a pro-inflammatory senescence-associated secretory phenotype (SASP) that can drive or exacerbate several age-related pathologies, including cancer. Flavonoids, including apigenin, were recently shown to reduce the SASP of a human fibroblast strain induced to senesce by bleomycin. Here, we confirm that apigenin suppresses the SASP in three human fibroblast strains induced to senesce by ionizing radiation, constitutive MAPK (mitogen-activated protein kinase) signaling, oncogenic RAS, or replicative exhaustion. Apigenin suppressed the SASP in part by suppressing IL-1α signaling through IRAK1 and IRAK4, p38-MAPK, and NF-κB. Apigenin was particularly potent at suppressing the expression and secretion of CXCL10 (IP10), a newly identified SASP factor. Further, apigenin-mediated suppression of the SASP substantially reduced the aggressive phenotype of human breast cancer cells, as determined by cell proliferation, extracellular matrix invasion, and epithelial-mesenchymal transition. Our results support the idea that apigenin is a promising natural product for reducing the impact of senescent cells on age-related diseases such as cancer.
Publication
Journal: Journal of Clinical Biochemistry and Nutrition
July/13/2011
Abstract
In this study, we investigated the mechanistic role of the caspase cascade in extrinsic and intrinsic apoptosis induced by apigenin, which has been targeted as a candidate in the development of noncytotoxic anticancer medicines. Treatment with apigenin (1-100 microM) significantly inhibited the proliferation of MDA-MB-453 human breast cancer cells in a dose- and time-dependent manner with IC(50) values of 59.44 and 35.15 microM at 24 and 72 h, respectively. This inhibition resulted in the induction of apoptosis and the release of cytochrome c in cells exposed to apigenin at its 72 h IC(50). Subsequently, caspase-9, which acts in mitochondria-mediated apoptosis, was cleaved by apigenin. In addition, apigenin activated caspase-3, which functions downstream of caspase-9. The apigenin-induced activation of caspase-3 was accompanied by the cleavage of capases-6, -7, and -8. These results are supported by evidence showing that the activity patterns of caspases-3, -8, and -9 were similar. The present study supports the hypothesis that apigenin-induced apoptosis involves the activation of both the intrinsic and extrinsic apoptotic pathways.
Publication
Journal: International Journal of Molecular Sciences
June/29/2019
Abstract
Interleukin (IL)-6 plays a crucial role in the progression, invasion, and metastasis of breast cancer. Triple-negative breast cancer (TNBC) cell line MDA-MB-231 is known for its aggressive metastasis. Epithelial to mesenchymal transition (EMT) is a critical process in cancer metastasis. The positive correlation between IL-6 and EMT in tumor microenvironment is reported. We found significantly upregulated IL-6 expression in MDA-MB-231 cells. A blockade of IL-6 expression decreased levels of phosphorylated signal transducer and activator of transcription 3 (pSTAT3), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), phosphorylated protein kinase B (pAkt), and cell cycle-related molecules, including cyclin-dependent kinases (CDKs) and cyclins in MDA-MB-231 cells. A short-hairpin RNA (shRNA)-mediated blockade of IL-6 expression inhibited migration and N-cadherin expression and induced E-cadherin expression in MDA-MB-231 cells. Growth rate was slower for the tumors derived from IL-6 shRNA-treated MDA-MB-231 cells than for those derived from control shRNA-treated MDA-MB-231 cells. The expression of pSTAT3, phosphorylated extracellular signal-regulated kinase (pERK), PI3K, pAkt, snail, vimentin, and N-cadherin was significantly lower in tumors from IL-6 shRNA-treated MDA-MB cells. In addition, apigenin treatment significantly inhibited the growth of MDA-MB-231-derived xenograft tumors along with the protein expressions of pSTAT3, pERK, IL-6, PI3K, pAkt, and N-cadherin. Our results demonstrate that the anti-invasive effect of apigenin in MDA-MB-231-derived xenograft tumors is mediated by the inhibition of IL-6-linked downstream signaling pathway.
Publication
Journal: Oncology Letters
March/20/2020
Abstract
The lack of hormone receptors in triple negative breast cancer (TNBC) is associated with the inefficacy of anti-estrogen chemotherapies, leaving fewer options for patient treatment and higher mortality rates. Additionally, as with numerous types of inflammatory breast cancer, infiltration of tumor associated macrophages and other leukocyte sub-populations within the tumor inevitably lead to aggressive, chemo-resistant, metastatic and invasive types of cancer which escape immune surveillance. These processes are orchestrated by the release of potent cytokines, including TNFα, IL-6 and CCL2 from the stroma, tumor and immune cells within the tumor microenvironment. The present study evaluated apigenin modulating effects on the pro-inflammatory activating action of TNFα in TNBC MDA-MB-468 cells, derived from an African American woman. Initially, cell viability was determined to establish an optimal sub-lethal dose of TNFα and apigenin in MDA-MB-468 cells. Subsequently, various treatments effects were evaluated using whole transcriptomic analysis of mRNA and long intergenic non-coding RNA with Affymetrix HuGene-2.1-st human microarrays. Gene level differential expression analysis was conducted on 48,226 genes where TNFα caused significant upregulation of 53 transcripts and downregulation of 11 transcripts. The largest upward differential shift was for CCL2 [+61.86 fold change (FC); false discovery rate (FDR), P<0.0001]; which was down regulated by apigenin (to +10.71 FC vs. Control; FDR P-value <0.001), equivalent to an 83% reduction. Several TNFα deferentially upregulated transcripts were reduced by apigenin, including CXCL10, C3, PGLYRP4, IL22RA2, KMO, IL7R, ROS1, CFB, IKBKe, SLITRK6 (a checkpoint target) and MMP13. Confirmation of CCL2 experimentally induced transcript alterations was corroborated at the protein level by ELISA assays. The high level of CCL2 transcript in the cell line was comparable to that in our previous studies in MDA-MB-231 cells. The differential effects of TNFα were corroborated by ELISA, where the data revealed a >10-fold higher releasing rate of CCL2 in MDA-MB-468 cells compared with in MDA-MB-231 cells, both of which were attenuated by apigenin. The data obtained in the present study demonstrated a high level of CCL2 in MDA-MB-468 cells and a possible therapeutic role for apigenin in downregulating TNFα-mediated processes in these TNBC cells.
Publication
Journal: International Journal of Molecular Sciences
January/19/2021
Abstract
Approximately 80% of breast cancer (BC) cases express the estrogen receptor (ER), and 30-40% of these cases acquire resistance to endocrine therapies over time. Hyperactivation of Akt is one of the mechanisms by which endocrine resistance is acquired. Apigenin (Api), a flavone found in several plant foods, has shown beneficial effects in cancer and chronic diseases. Here, we studied the therapeutic potential of Api in the treatment of ER-positive, endocrine therapy-resistant BC. To achieve this objective, we stably overexpressed the constitutively active form of the Akt protein in MCF-7 cells (named the MCF-7/Akt clone). The proliferation of MCF-7/Akt cells is partially independent of estradiol (E2) and exhibits an incomplete response to the anti-estrogen agent 4-hydroxytamoxifen, demonstrating the resistance of these cells to hormone therapy. Api exerts an antiproliferative effect on the MCF-7/Akt clone. Api inhibits the proliferative effect of E2 by inducing G2/M phase cell cycle arrest and apoptosis. Importantly, Api inhibits the Akt/FOXM1 signaling pathway by decreasing the expression of FOXM1, a key transcription factor involved in the cell cycle. Api also alters the expression of genes regulated by FOXM1, including cell cycle-related genes, particularly in the MCF-7/Akt clone. Together, our results strengthen the therapeutic potential of Api for the treatment of endocrine-resistant BC.
Keywords: Akt; ER; FOXM1; apigenin; breast cancer; endocrine resistance; phytochemicals.
Publication
Journal: Molecular Cancer Therapeutics
September/7/2008
Abstract
Breast cancer resistance to the antiestrogens tamoxifen (OHT) and fulvestrant is accompanied by alterations in both estrogen-dependent and estrogen-independent signaling pathways. Consequently, effective inhibition of both pathways may be necessary to block proliferation of antiestrogen-resistant breast cancer cells. In this study, we examined the effects of apigenin, a dietary plant flavonoid with potential anticancer properties, on estrogen-responsive, antiestrogen-sensitive MCF7 breast cancer cells and two MCF7 sublines with acquired resistance to either OHT or fulvestrant. We found that apigenin can function as both an estrogen and an antiestrogen in a dose-dependent manner. At low concentrations (1 mumol/L), apigenin stimulated MCF7 cell growth but had no effect on the antiestrogen-resistant MCF7 sublines. In contrast, at high concentrations (>10 mumol/L), the drug inhibited growth of MCF7 cells and the antiestrogen-resistant sublines, and the combination of apigenin with either OHT or fulvestrant showed synergistic, growth-inhibitory effects on both antiestrogen-sensitive and antiestrogen-resistant breast cancer cells. To further elucidate the molecular mechanism of apigenin as either an estrogen or an antiestrogen, effects of the drug on estrogen receptor-alpha (ERalpha); transactivation activity, mobility, stability, and ERalpha-coactivator interactions were investigated. Low-dose apigenin enhanced receptor transcriptional activity by promoting interaction between ERalpha and its coactivator amplified in breast cancer-1. However, higher doses (>10 mumol/L) of apigenin inhibited ERalpha mobility (as determined by fluorescence recovery after photobleaching assays), down-regulated ERalpha and amplified in breast cancer-1 expression levels, and inhibited multiple protein kinases, including p38, protein kinase A, mitogen-activated protein kinase, and AKT. Collectively, these results show that apigenin can function as both an antiestrogen and a protein kinase inhibitor with activity against breast cancer cells with acquired resistance to OHT or fulvestrant. We conclude that apigenin, through its ability to target both ERalpha-dependent and ERalpha-independent pathways, holds promise as a new therapeutic agent against antiestrogen-resistant breast cancer.
Publication
Journal: Oncology Reports
November/2/2017
Abstract
Drug resistance in chemotherapy is a serious obstacle for the successful treatment of cancer. Drug resistance is caused by various factors, including the overexpression of P‑glycoprotein (P‑gp, MDR1). The development of new, useful compounds that overcome drug resistance is urgent. Apigenin, a dietary flavonoid, has been reported as an anticancer drug in vivo and in vitro. In the present study, we investigated whether apigenin is able to reverse drug resistance using adriamycin‑resistant breast cancer cells (MCF‑7/ADR). In our experiments, apigenin significantly decreased cell growth and colony formation in MCF‑7/ADR cells and parental MCF‑7 cells. This growth inhibition was related to the accumulation of cells in the sub‑G0/G1 apoptotic population and an increase in the number of apoptotic cells. Apigenin reduced the mRNA expression of multidrug resistance 1 (MDR1) and multidrug resistance‑associated proteins (MRPs) in MCF‑7/ADR cells. Apigenin also downregulated the expression of P‑gp. Apigenin reversed drug efflux from MCF‑7/ADR cells, resulting in rhodamine 123 (Rho123) accumulation. Inhibition of drug resistance by apigenin is related to the suppression of the signal transducer and activator of transcription 3 (STAT3) signaling pathway. Apigenin decreased STAT3 activation (p‑STAT3) and its nuclear translocation and inhibited the secretion of VEGF and MMP‑9, which are STAT3 target genes. A STAT3 inhibitor, JAK inhibitor I and an HIF‑1α inhibitor decreased cell growth in MCF‑7 and MCF‑7/ADR cells. Taken together, these results demonstrate that apigenin can overcome drug resistance.
Publication
Journal: PLoS ONE
September/5/2017
Abstract
Mortality associated with breast cancer is attributable to aggressive metastasis, to which TNFα plays a central orchestrating role. TNFα acts on breast tumor TNF receptors evoking the release of chemotactic proteins (e.g. MCP-1/CCL2). These proteins direct inward infiltration/migration of tumor-associated macrophages (TAMs), tumor-associated neutrophils (TANs), myeloid-derived suppressor cells (MDSCs), T-regulatory cells (Tregs), T helper IL-17-producing cells (Th17s), metastasis-associated macrophages (MAMs) and cancer-associated fibroblasts (CAFs). Tumor embedded infiltrates collectively enable immune evasion, tumor growth, angiogenesis, and metastasis. In the current study, we investigate the potential of apigenin, a known anti-inflammatory constituent of parsley, to downregulate TNFα mediated release of chemokines from human triple-negative cells (MDA-MB-231 cells). The results show that TNFα stimulation leads to large rise of CCL2, granulocyte macrophage colony-stimulating factor (GMCSF), IL-1α and IL-6, all suppressed by apigenin. While many aspects of the transcriptome for NFkB signaling were evaluated, the data show signaling patterns associated with CCL2 were blocked by apigenin and mediated through suppressed mRNA and protein synthesis of IKBKe. Moreover, the data show that the attenuation of CCL2 by apigenin in the presence TNFα paralleled the suppression of phosphorylated extracellular signal-regulated kinase 1 (ERK 1/ 2). In summary, the obtained findings suggest that there exists a TNFα evoked release of CCL2 and other LSP recruiting cytokines from human breast cancer cells, which can be attenuated by apigenin.
Publication
Journal: Breast Cancer Research
March/5/2008
Abstract
BACKGROUND
Proteasome inhibition is an attractive approach to anticancer therapy and may have relevancy in breast cancer treatment. Natural products, such as dietary flavonoids, have been suggested as natural proteasome inhibitors with potential use for cancer prevention and therapeutics. We previously reported that apigenin, a flavonoid widely distributed in many fruits and vegetables, can inhibit proteasome activity and can induce apoptosis in cultured leukemia Jurkat T cells. Whether apigenin has proteasome-inhibitory activity in the highly metastatic human breast MDA-MB-231 cells and xenografts,however, is unknown.
METHODS
MDA-MB-231 breast cancer cell cultures and xenografts were treated with apigenin, followed by measurement of reduced cellular viability/proliferation,proteasome inhibition, and apoptosis induction. Inhibition of the proteasome was determined by levels of the proteasomal chymotrypsin-like activity, by ubiquitinated proteins, and by accumulation of proteasome target proteins in extracts of the treated cells or tumors. Apoptotic cell death was measured by caspase-3/caspase-7 activation, poly(ADP-ribose) polymerase cleavage, and immunohistochemistry for terminal nucleotidyltransferase-mediated nick end labeling positivity.
RESULTS
We report for the first time that apigenin inhibits the proteasomal chymotrypsin-like activity and induces apoptosis not only in cultured MDA-MB-231 cells but also in MDA-MB-231 xenografts. Furthermore, while apigenin has antibreast tumor activity, no apparent toxicity to the tested animals was observed.
CONCLUSIONS
We have shown that apigenin is an effective proteasome inhibitor in cultured breast cancer cells and in breast cancer xenografts. Furthermore, apigenin induces apoptotic cell death in human breast cancer cells and exhibits anticancer activities in tumors. The results suggest its potential benefits in breast cancer prevention and treatment.
Publication
Journal: Nutrients
January/25/2019
Abstract
The flavone apigenin and the mycotoxin zearalenone are two major compounds found in the human diet which bind estrogen receptors (ERs), and therefore influence ER activity. However, the underlying mechanisms are not well known. To unravel the molecular mechanisms that could explain the differential effect of zearalenone and apigenin on ER-positive breast cancer cell proliferation, gene-reporter assays, chromatin immunoprecipitation (ChIP) experiments, proliferation assays and transcriptomic analysis were performed. We found that zearalenone and apigenin transactivated ERs and promoted the expression of estradiol (E2)-responsive genes. However, zearalenone clearly enhanced cellular proliferation, while apigenin appeared to be antiestrogenic in the presence of E2 in both ER-positive breast cancer cell lines, MCF-7 and T47D. The transcriptomic analysis showed that both compounds regulate gene expression in the same way, but with differences in intensity. Two major sets of genes were identified; one set was linked to the cell cycle and the other set was linked to stress response and growth arrest. Our results show that the transcription dynamics in gene regulation induced by apigenin were somehow different with zearalenone and E2 and may explain the differential effect of these compounds on the phenotype of the breast cancer cell. Together, our results confirmed the potential health benefit effect of apigenin, while zearalenone appeared to be a true endocrine-disrupting compound.
Publication
Journal: Bioscience Reports
September/5/2016
Abstract
Phytoestrogen intake is known to be beneficial to decrease breast cancer incidence and progression. But its molecular mechanisms of action are still unknown. The present study aimed to examine the effect of apigenin on proliferation and apoptosis in HER2-expressing breast cancer cells. In our experiments, apigenin inhibited the proliferation of BT-474 cells in a dose- and time-dependent manner. Apigenin also inhibited clonogenic survival (anchorage-dependent and -independent) of BT-474 cells in a dose-dependent manner. These growth inhibitions were accompanied with an increase in sub-G0/G1 apoptotic populations. Apigenin-induced extrinsic a caspase-dependent apoptosis up-regulating the levels of cleaved caspase-8 and cleaved caspase-3, and inducing the cleavage of poly (ADP-ribose) polymerase (PARP). Whereas, apigenin did not induce apoptosis via intrinsic mitochondrial apoptosis pathway since this compound did not decrease mitochondrial membrane potential without affecting the levels of B-cell lymphoma 2 (Bcl-2) and Bcl-2-associated X protein (BAX). Apigenin reduced the expression of phospho-JAK1, phospho-JAK2 and phospho-STAT3 and decreased signal transducer and activator of transcription 3 (STAT3) dependent luciferase reporter gene activity in BT-474 cells. Apigenin inhibited CoCl2-induced VEGF secretion and decreased the nuclear translocation of STAT3. Our study indicates that apigenin induces apoptosis through inhibition of STAT3 signalling and could serve as a useful compound to prevent or treat HER2-overexpressing breast cancer.
Publication
Journal: BMC Cancer
August/30/2016
Abstract
BACKGROUND
Flavones found in plants display various biological activities, including anti-allergic, anti-viral, anti-inflammatory, anti-oxidation, and anti-tumor effects. In this study, we investigated the anti-tumor effects of flavone, apigenin and luteolin on human breast cancer cells.
METHODS
The anti-cancer activity of flavone, apigenin and luteolin was investigated using the MTS assay. Apoptosis was analyzed by Hoechst 33342 staining, flow cytometry and western blot. Cell migration was determined using the culture inserts and xCELLigence real-time cell analyzer instrument equipped with a CIM-plate 16. Real-time quantitative PCR and western blot were used to determine the signaling pathway elicited by flavone, apigenin and luteolin.
RESULTS
Flavone, apigenin and luteolin showed potent inhibitory effects on the proliferation of Hs578T, MDA-MB-231 and MCF-7 breast cancer cells in a concentration and time-dependent manner. The ability of flavone, apigenin and luteolin to inhibit the growth of breast cancer cells through apoptosis was confirmed by Hoechst33342 staining and the induction of sub-G1 phase of the cell cycle. Flavone, apigenin and luteolin induced forkhead box O3 (FOXO3a) expression by inhibiting Phosphoinositide 3-kinase (PI3K) and protein kinase B (PKB)/Akt. This subsequently elevated the expression of FOXO3a target genes, including the Cyclin-dependent kinase inhibitors p21Cip1 (p21) and p27kip1 (p27), which increased the levels of activated poly(ADP) polymerase (PARP) and cytochrome c.
CONCLUSIONS
Taken together, these data demonstrated that flavone, apigenin and luteolin induced cell cycle arrest and apoptosis in breast cancer cells through inhibiting PI3K/Akt activation and increasing FOXO3a activation, which suggest that flavone, apigenin and luteolin will be the potential leads for the preventing and treating of breast cancer.
Publication
Journal: Neoplasia
January/10/2007
Abstract
Two flavonoids, genistein and apigenin, have been implicated as chemopreventive agents against prostate and breast cancers. However, the mechanisms behind their respective cancer-protective effects may vary significantly. The goal of this study was to determine whether the antiproliferative action of these flavonoids on prostate (DU-145) and breast (MDA-MB-231) cancer cells expressing only estrogen receptor (ER) beta is mediated by this ER subtype. It was found that both genistein and apigenin, although not 17beta-estradiol, exhibited antiproliferative effects and proapoptotic activities through caspase-3 activation in these two cell lines. In yeast transcription assays, both flavonoids displayed high specificity toward ERbeta transactivation, particularly at lower concentrations. However, in mammalian assay, apigenin was found to be more ERbeta-selective than genistein, which has equal potency in inducing transactivation through ERalpha and ERbeta. Small interfering RNA-mediated downregulation of ERbeta abrogated the antiproliferative effect of apigenin in both cancer cells but did not reverse that of genistein. Our data unveil, for the first time, that the anticancer action of apigenin is mediated, in part, by ERbeta. The differential use of ERalpha and ERbeta signaling for transaction between genistein and apigenin demonstrates the complexity of phytoestrogen action in the context of their anticancer properties.
Publication
Journal: Cancer Prevention Research
January/4/2012
Abstract
The use of progestins as a component of hormone replacement therapy has been linked to an increase in breast cancer risk in postmenopausal women. We have previously shown that medroxyprogesterone acetate (MPA), a commonly administered synthetic progestin, increases production of the potent angiogenic factor vascular endothelial growth factor (VEGF) by tumor cells, leading to the development of new blood vessels and tumor growth. We sought to identify nontoxic chemicals that would inhibit progestin-induced tumorigenesis. We used a recently developed progestin-dependent mammary cancer model in which tumors are induced in Sprague-Dawley rats by 7,12-dimethylbenz(a)anthracene (DMBA) treatment. The flavonoid apigenin, which we previously found to inhibit progestin-dependent VEGF synthesis in human breast cancer cells in vitro, significantly delayed the development of, and decreased the incidence and multiplicity of, MPA-accelerated DMBA-induced mammary tumors in this animal model. Whereas apigenin decreased the occurrence of such tumors, it did not block MPA-induced intraductal and lobular epithelial cell hyperplasia in the mammary tissue. Apigenin blocked MPA-dependent increases in VEGF, and suppressed VEGF receptor-2 (VEGFR-2) but not VEGFR-1 in regions of hyperplasia. No differences were observed in estrogen or progesterone receptor (ER/PR) levels, or the number of estrogen receptor-positive cells, within the mammary gland of MPA-treated animals administered apigenin, MPA-treated animals, and placebo treated animals. However, the number of progesterone receptor-positive cells was reduced in animals treated with MPA or MPA and apigenin compared with those treated with placebo. These findings suggest that apigenin has important chemopreventive properties for those breast cancers that develop in response to progestins.
Publication
Journal: Experimental and Therapeutic Medicine
August/3/2020
Abstract
Ovarian cancer (OC) is one of the prominent causes of mortality in female patients diagnosed with gynecologic malignancies. While it has previously been demonstrated that apigenin inhibits cell growth in colon and breast cancer cells, the effect of apigenin in OC cells is not fully understood. Therefore, the aim of the present study was to investigate the impact of apigenin on cell death and resistance to cisplatin in OC cells. It was found that apigenin inhibited proliferation, hindered cell cycle progression and promoted SKOV3 cell apoptosis. Moreover, these effects were also observed in cisplatin-resistant SKOV3/DDP cells. Furthermore, apigenin reduced the mitochondrial transmembrane potential, and elevated the ratios of cleaved caspase-3/caspase-3 and Bax/Bcl-2 in the two cell types. Reverse transcription-quantitative PCR and western blotting results demonstrated that apigenin significantly downregulated Mcl-1 at the transcriptional and translational levels in SKOV3 and SKOV3/DDP cells, which was responsible for its cytotoxic functions and chemosensitizing effects. Collectively, the present results identified the impact of apigenin on OC cell death and resistance to cisplatin, and the potential molecular mechanisms. However, additional studies are required to further elucidate the underlying mechanisms.
Keywords: apigenin; apoptosis; chemoresistance; myeloid cell leukemia 1; ovarian cancer.
Publication