Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature Cell Biology
March/20/2011
Abstract
Autophagy is a process by which components of the cell are degraded to maintain essential activity and viability in response to nutrient limitation. Extensive genetic studies have shown that the yeast ATG1 kinase has an essential role in autophagy induction. Furthermore, autophagy is promoted by AMP activated protein kinase (AMPK), which is a key energy sensor and regulates cellular metabolism to maintain energy homeostasis. Conversely, autophagy is inhibited by the mammalian target of rapamycin (mTOR), a central cell-growth regulator that integrates growth factor and nutrient signals. Here we demonstrate a molecular mechanism for regulation of the mammalian autophagy-initiating kinase Ulk1, a homologue of yeast ATG1. Under glucose starvation, AMPK promotes autophagy by directly activating Ulk1 through phosphorylation of Ser 317 and Ser 777. Under nutrient sufficiency, high mTOR activity prevents Ulk1 activation by phosphorylating Ulk1 Ser 757 and disrupting the interaction between Ulk1 and AMPK. This coordinated phosphorylation is important for Ulk1 in autophagy induction. Our study has revealed a signalling mechanism for Ulk1 regulation and autophagy induction in response to nutrient signalling.
Pulse
Views:
9
Posts:
No posts
Rating:
Not rated
Publication
Journal: Science
February/10/2011
Abstract
Adenosine monophosphate-activated protein kinase (AMPK) is a conserved sensor of intracellular energy activated in response to low nutrient availability and environmental stress. In a screen for conserved substrates of AMPK, we identified ULK1 and ULK2, mammalian orthologs of the yeast protein kinase Atg1, which is required for autophagy. Genetic analysis of AMPK or ULK1 in mammalian liver and Caenorhabditis elegans revealed a requirement for these kinases in autophagy. In mammals, loss of AMPK or ULK1 resulted in aberrant accumulation of the autophagy adaptor p62 and defective mitophagy. Reconstitution of ULK1-deficient cells with a mutant ULK1 that cannot be phosphorylated by AMPK revealed that such phosphorylation is required for mitochondrial homeostasis and cell survival during starvation. These findings uncover a conserved biochemical mechanism coupling nutrient status with autophagy and cell survival.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Molecular Biology of the Cell
June/30/2009
Abstract
Autophagy, the starvation-induced degradation of bulky cytosolic components, is up-regulated in mammalian cells when nutrient supplies are limited. Although mammalian target of rapamycin (mTOR) is known as the key regulator of autophagy induction, the mechanism by which mTOR regulates autophagy has remained elusive. Here, we identify that mTOR phosphorylates a mammalian homologue of Atg13 and the mammalian Atg1 homologues ULK1 and ULK2. The mammalian Atg13 binds both ULK1 and ULK2 and mediates the interaction of the ULK proteins with FIP200. The binding of Atg13 stabilizes and activates ULK and facilitates the phosphorylation of FIP200 by ULK, whereas knockdown of Atg13 inhibits autophagosome formation. Inhibition of mTOR by rapamycin or leucine deprivation, the conditions that induce autophagy, leads to dephosphorylation of ULK1, ULK2, and Atg13 and activates ULK to phosphorylate FIP200. These findings demonstrate that the ULK-Atg13-FIP200 complexes are direct targets of mTOR and important regulators of autophagy in response to mTOR signaling.
Publication
Journal: Molecular Biology of the Cell
June/30/2009
Abstract
Autophagy is an intracellular degradation system, by which cytoplasmic contents are degraded in lysosomes. Autophagy is dynamically induced by nutrient depletion to provide necessary amino acids within cells, thus helping them adapt to starvation. Although it has been suggested that mTOR is a major negative regulator of autophagy, how it controls autophagy has not yet been determined. Here, we report a novel mammalian autophagy factor, Atg13, which forms a stable approximately 3-MDa protein complex with ULK1 and FIP200. Atg13 localizes on the autophagic isolation membrane and is essential for autophagosome formation. In contrast to yeast counterparts, formation of the ULK1-Atg13-FIP200 complex is not altered by nutrient conditions. Importantly, mTORC1 is incorporated into the ULK1-Atg13-FIP200 complex through ULK1 in a nutrient-dependent manner and mTOR phosphorylates ULK1 and Atg13. ULK1 is dephosphorylated by rapamycin treatment or starvation. These data suggest that mTORC1 suppresses autophagy through direct regulation of the approximately 3-MDa ULK1-Atg13-FIP200 complex.
Publication
Journal: Nature Immunology
July/4/2011
Abstract
High-fat diet (HFD) and inflammation are key contributors to insulin resistance and type 2 diabetes (T2D). Interleukin (IL)-1β plays a role in insulin resistance, yet how IL-1β is induced by the fatty acids in an HFD, and how this alters insulin signaling, is unclear. We show that the saturated fatty acid palmitate, but not unsaturated oleate, induces the activation of the NLRP3-ASC inflammasome, causing caspase-1, IL-1β and IL-18 production. This pathway involves mitochondrial reactive oxygen species and the AMP-activated protein kinase and unc-51-like kinase-1 (ULK1) autophagy signaling cascade. Inflammasome activation in hematopoietic cells impairs insulin signaling in several target tissues to reduce glucose tolerance and insulin sensitivity. Furthermore, IL-1β affects insulin sensitivity through tumor necrosis factor-independent and dependent pathways. These findings provide insights into the association of inflammation, diet and T2D.
Publication
Journal: Journal of Biological Chemistry
June/7/2009
Abstract
Autophagy is a degradative process that recycles long-lived and faulty cellular components. It is linked to many diseases and is required for normal development. ULK1, a mammalian serine/threonine protein kinase, plays a key role in the initial stages of autophagy, though the exact molecular mechanism is unknown. Here we report identification of a novel protein complex containing ULK1 and two additional protein factors, FIP200 and ATG13, all of which are essential for starvation-induced autophagy. Both FIP200 and ATG13 are critical for correct localization of ULK1 to the pre-autophagosome and stability of ULK1 protein. Additionally, we demonstrate by using both cellular experiments and a de novo in vitro reconstituted reaction that FIP200 and ATG13 can enhance ULK1 kinase activity individually but both are required for maximal stimulation. Further, we show that ATG13 and ULK1 are phosphorylated by the mTOR pathway in a nutrient starvation-regulated manner, indicating that the ULK1.ATG13.FIP200 complex acts as a node for integrating incoming autophagy signals into autophagosome biogenesis.
Publication
Journal: Nature
October/15/2009
Abstract
Macroautophagy is a process that leads to the bulk degradation of subcellular constituents by producing autophagosomes/autolysosomes. It is believed that Atg5 (ref. 4) and Atg7 (ref. 5) are essential genes for mammalian macroautophagy. Here we show, however, that mouse cells lacking Atg5 or Atg7 can still form autophagosomes/autolysosomes and perform autophagy-mediated protein degradation when subjected to certain stressors. Although lipidation of the microtubule-associated protein light chain 3 (LC3, also known as Map1lc3a) to form LC3-II is generally considered to be a good indicator of macroautophagy, it did not occur during the Atg5/Atg7-independent alternative process of macroautophagy. We also found that this alternative process of macroautophagy was regulated by several autophagic proteins, including Unc-51-like kinase 1 (Ulk1) and beclin 1. Unlike conventional macroautophagy, autophagosomes seemed to be generated in a Rab9-dependent manner by the fusion of isolation membranes with vesicles derived from the trans-Golgi and late endosomes. In vivo, Atg5-independent alternative macroautophagy was detected in several embryonic tissues. It also had a function in clearing mitochondria during erythroid maturation. These results indicate that mammalian macroautophagy can occur through at least two different pathways: an Atg5/Atg7-dependent conventional pathway and an Atg5/Atg7-independent alternative pathway.
Publication
Journal: Nature
September/13/2015
Abstract
Protein aggregates and damaged organelles are tagged with ubiquitin chains to trigger selective autophagy. To initiate mitophagy, the ubiquitin kinase PINK1 phosphorylates ubiquitin to activate the ubiquitin ligase parkin, which builds ubiquitin chains on mitochondrial outer membrane proteins, where they act to recruit autophagy receptors. Using genome editing to knockout five autophagy receptors in HeLa cells, here we show that two receptors previously linked to xenophagy, NDP52 and optineurin, are the primary receptors for PINK1- and parkin-mediated mitophagy. PINK1 recruits NDP52 and optineurin, but not p62, to mitochondria to activate mitophagy directly, independently of parkin. Once recruited to mitochondria, NDP52 and optineurin recruit the autophagy factors ULK1, DFCP1 and WIPI1 to focal spots proximal to mitochondria, revealing a function for these autophagy receptors upstream of LC3. This supports a new model in which PINK1-generated phospho-ubiquitin serves as the autophagy signal on mitochondria, and parkin then acts to amplify this signal. This work also suggests direct and broader roles for ubiquitin phosphorylation in other autophagy pathways.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Current Opinion in Cell Biology
June/22/2010
Abstract
The Atg1/ULK complex plays an essential role in the initiation of autophagy: receiving signals of cellular nutrient status, recruiting downstream Atg proteins to the autophagosome formation site, and governing autophagosome formation. Recent studies of mammalian Atg1 homologs (ULK1 and ULK2) have identified several novel interacting proteins, FIP200, mAtg13, and Atg101. FIP200 and Atg101 are not conserved in Saccharomyces cerevisiae, despite the high conservation rates of other downstream Atg proteins between the yeast and mammals. Furthermore, through studies of the Atg1/ULK1 complex, the molecular mechanism by which (m)TORC1 regulates autophagy is now being clarified in detail.
Publication
Journal: Nature Cell Biology
September/11/2013
Abstract
Autophagy is the primary cellular catabolic program activated in response to nutrient starvation. Initiation of autophagy, particularly by amino-acid withdrawal, requires the ULK kinases. Despite its pivotal role in autophagy initiation, little is known about the mechanisms by which ULK promotes autophagy. Here we describe a molecular mechanism linking ULK to the pro-autophagic lipid kinase VPS34. Following amino-acid starvation or mTOR inhibition, the activated ULK1 phosphorylates Beclin-1 on Ser 14, thereby enhancing the activity of the ATG14L-containing VPS34 complexes. The Beclin-1 Ser 14 phosphorylation by ULK is required for full autophagic induction in mammals and this requirement is conserved in Caenorhabditis elegans. Our study reveals a molecular link from ULK1 to activation of the autophagy-specific VPS34 complex and autophagy induction.
Publication
Journal: Journal of Cell Biology
June/2/2008
Abstract
Autophagy is a membrane-mediated intracellular degradation system. The serine/threonine kinase Atg1 plays an essential role in autophagosome formation. However, the role of the mammalian Atg1 homologues UNC-51-like kinase (ULK) 1 and 2 are not yet well understood. We found that murine ULK1 and 2 localized to autophagic isolation membrane under starvation conditions. Kinase-dead alleles of ULK1 and 2 exerted a dominant-negative effect on autophagosome formation, suggesting that ULK kinase activity is important for autophagy. We next screened for ULK binding proteins and identified the focal adhesion kinase family interacting protein of 200 kD (FIP200), which regulates diverse cellular functions such as cell size, proliferation, and migration. We found that FIP200 was redistributed from the cytoplasm to the isolation membrane under starvation conditions. In FIP200-deficient cells, autophagy induction by various treatments was abolished, and both stability and phosphorylation of ULK1 were impaired. These results suggest that FIP200 is a novel mammalian autophagy factor that functions together with ULKs.
Publication
Journal: Molecular and Cellular Biology
February/12/2012
Abstract
Living cells are adaptive self-sustaining systems. They strictly depend on the sufficient supply of oxygen, energy, and nutrients from the outside in order to sustain their internal organization. However, as autonomous entities they are able to monitor and appropriately adapt to any critical fluctuation in their environment. In the case of insufficient external nutrient supply or augmented energy demands, cells start to extensively digest their own interior. This process, known as macroautophagy, comprises the transport of cytosolic portions and entire organelles to the lysosomal compartment via specific double-membrane vesicles, called autophagosomes. Although extensively upregulated under nutrient restriction, a low level of basal autophagy is likewise crucial in order to sustain the cellular homeostasis. On the other hand, cells have to avoid excessive and enduring self-digestion. The delicate balance between external energy and nutrient supply and internal production and consumption is a demanding task. The complex protein network that senses and precisely reacts to environmental changes is thus mainly regulated by rapid and reversible posttranslational modifications such as phosphorylation. This review focuses on the serine/threonine protein kinases AMP-activated protein kinase, mammalian target of rapamycin (mTOR), and unc-51-like kinase 1/2 (Ulk1/2), three interconnected major junctions within the autophagy regulating signaling network.
Publication
Journal: Journal of Cell Science
December/7/2006
Abstract
Autophagy, fundamentally a lysosomal degradation pathway, functions in cells during normal growth and certain pathological conditions, including starvation, to maintain homeostasis. Autophagosomes are formed through a mechanism that is not well understood, despite the identification of many genes required for autophagy. We have studied the mammalian homologue of Atg9p, a multi-spanning transmembrane protein essential in yeast for autophagy, to gain a better understanding of the function of this ubiquitious protein. We show that both the N- and C-termini of mammalian Atg9 (mAtg9) are cytosolic, and predict that mAtg9 spans the membrane six times. We find that mAtg9 is located in the trans-Golgi network and late endosomes and colocalizes with TGN46, the cation-independent mannose-6-phosphate receptor, Rab7 and Rab9. Amino acid starvation or rapamycin treatment, which upregulates autophagy, causes a redistribution of mAtg9 from the TGN to peripheral, endosomal membranes, which are positive for the autophagosomal marker GFP-LC3. siRNA-mediated depletion of the putative mammalian homologue of Atg1p, ULK1, inhibits this starvation-induced redistribution. The redistribution of mAtg9 also requires PI 3-kinase activity, and is reversed after restoration of amino acids. We speculate that starvation-induced autophagy, which requires mAtg9, may rely on an alteration of the steady-state trafficking of mAtg9, in a Atg1-dependent manner.
Publication
Journal: Autophagy
November/30/2010
Abstract
Autophagy is an intracellular degradation process, through which cytosolic materials are delivered to the lysosome.Despite recent identification of many autophagy-related genes, how autophagosomes are generated remains unclear.Here, we examined the hierarchical relationships among mammalian Atg proteins. Under starvation conditions, ULK1,Atg14, WIPI-1, LC3 and Atg16L1 target to the same compartment, whereas DFCP1 localizes adjacently to these Atgproteins. In terms of puncta formation, the protein complex including ULK1 and FIP200 is the most upstream unit and is required for puncta formation of the Atg14-containing PI3-kinase complex. Puncta formation of both DFCP1 and WIPI-1 requires FIP200 and Atg14. The Atg12-Atg5-Atg16L1 complex and LC3 are downstream units among these factors. The punctate structures containing upstream Atg proteins such as ULK1 and Atg14 tightly associate with the ER, where the ER protein vacuole membrane protein 1 (VMP1) also transiently localizes. These structures are formed even when cells are treated with wortmannin to suppress autophagosome formation. These hierarchical analyses suggest that ULK1, Atg14 and VMP1 localize to the ER-associated autophagosome formation sites in a PI3-kinase activity-independent manner.
Publication
Journal: Nature Cell Biology
May/22/2013
Abstract
Autophagy is important in the basal or stress-induced clearance of bulk cytosol, damaged organelles, pathogens and selected proteins by specific vesicles, the autophagosomes. Following mTOR (mammalian target of rapamycin) inhibition, autophagosome formation is primed by the ULK1 and the beclin-1-Vps34-AMBRA1 complexes, which are linked together by a scaffold platform, the exocyst. Although several regulative steps have been described along this pathway, few targets of mTOR are known, and the cross-talk between ULK1 and beclin 1 complexes is still not fully understood. We show that under non-autophagic conditions, mTOR inhibits AMBRA1 by phosphorylation, whereas on autophagy induction, AMBRA1 is dephosphorylated. In this condition, AMBRA1, interacting with the E3-ligase TRAF6, supports ULK1 ubiquitylation by LYS-63-linked chains, and its subsequent stabilization, self-association and function. As ULK1 has been shown to activate AMBRA1 by phosphorylation, the proposed pathway may act as a positive regulation loop, which may be targeted in human disorders linked to impaired autophagy.
Publication
Journal: Autophagy
August/26/2013
Abstract
Autophagosome formation is a complex process that begins with the nucleation of a pre-autophagosomal structure (PAS) that expands into a phagophore or isolation membrane, the precursor of the autophagosome. A key event in the formation of the phagophore is the production of PtdIns3P by the phosphatidylinsitol kinase Vps34. In yeast the two closely related proteins, Atg18 and Atg21, are the only known effectors of PtdIns3P that act in the autophagy pathway. The recruitment of Atg18 or Atg21 to the PAS is an essential step in the formation of the phagophore. Our bioinformatic analysis of the Atg18 and Atg21 orthologues in all eukaryotes shows that WIPI1 and WIPI2 are both mammalian orthologues of Atg18. We show that WIPI2 is a mammalian effector of PtdIns3P and is ubiquitously expressed in a variety of cell lines. WIPI2 is recruited to early autophagosomal structures along with Atg16L and ULK1 and is required for the formation of LC3-positive autophagosomes. Furthermore, when WIPI2 is depleted, we observe a remarkable accumulation of omegasomes, ER-localized PtdIns3P-containing structures labeled by DFCP1 (double FYVE domain-containing protein 1), which are thought to act as platforms for autophagosome formation. In view of our data we propose a role for WIPI2 in the progression of omegasomes into autophagosomes.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/29/2011
Abstract
The recognition and clearance of dead cells is a process that must occur efficiently to prevent an autoimmune or inflammatory response. Recently, a process was identified wherein the autophagy machinery is recruited to pathogen-containing phagosomes, termed MAPLC3A (LC3)-associated phagocytosis (LAP), which results in optimal degradation of the phagocytosed cargo. Here, we describe the engagement of LAP upon uptake of apoptotic, necrotic, and RIPK3-dependent necrotic cells by macrophages. This process is dependent on some members of the classical autophagy pathway, including Beclin1, ATG5, and ATG7. In contrast, ULK1, despite being required for autophagy, is dispensable for LAP induced by uptake of microbes or dead cells. LAP is required for efficient degradation of the engulfed corpse, and in the absence of LAP, engulfment of dead cells results in increased production of proinflammatory cytokines and decreased production of anti-inflammatory cytokines. LAP is triggered by engagement of the TIM4 receptor by either phosphatidylserine (PtdSer)-displaying dead cells or PtdSer-containing liposomes. Therefore, the consequence of phagocytosis of dead cells is strongly affected by those components of the autophagy pathway involved in LAP.
Publication
Journal: Blood
September/15/2008
Abstract
Production of a red blood cell's hemoglobin depends on mitochondrial heme synthesis. However, mature red blood cells are devoid of mitochondria and rely on glycolysis for ATP production. The molecular basis for the selective elimination of mitochondria from mature red blood cells remains controversial. Recent evidence suggests that clearance of both mitochondria and ribosomes, which occurs in reticulocytes following nuclear extrusion, depends on autophagy. Here, we demonstrate that Ulk1, a serine threonine kinase with homology to yeast atg1p, is a critical regulator of mitochondrial and ribosomal clearance during the final stages of erythroid maturation. However, in contrast to the core autophagy genes such as atg5 and atg7, expression of ulk1 is not essential for induction of macroautophagy in response to nutrient deprivation or for survival of newborn mice. Together, these data suggest that the ATG1 homologue, Ulk1, is a component of the selective autophagy machinery that leads to the elimination of organelles in erythroid cells rather that an essential mechanistic component of autophagy.
Publication
Journal: Molecular Biology of the Cell
December/23/2008
Abstract
In the process of autophagy, a ubiquitin-like molecule, LC3/Atg8, is conjugated to phosphatidylethanolamine (PE) and associates with forming autophagosomes. In mammalian cells, the existence of multiple Atg8 homologues (referred to as LC3 paralogues) has hampered genetic analysis of the lipidation of LC3 paralogues. Here, we show that overexpression of an inactive mutant of Atg4B, a protease that processes pro-LC3 paralogues, inhibits autophagic degradation and lipidation of LC3 paralogues. Inhibition was caused by sequestration of free LC3 paralogues in stable complexes with the Atg4B mutant. In mutant overexpressing cells, Atg5- and ULK1-positive intermediate autophagic structures accumulated. The length of these membrane structures was comparable to that in control cells; however, a significant number were not closed. These results show that the lipidation of LC3 paralogues is involved in the completion of autophagosome formation in mammalian cells. This study also provides a powerful tool for a wide variety of studies of autophagy in the future.
Publication
Journal: Arthritis and rheumatism
April/1/2010
Abstract
OBJECTIVE
Autophagy is a process for turnover of intracellular organelles and molecules that protects cells during stress responses. We undertook this study to evaluate the potential roles of Unc-51-like kinase 1 (ULK1), an inducer of autophagy, Beclin1, a regulator of autophagy, and microtubule-associated protein 1 light chain 3 (LC3), which executes autophagy, in the development of osteoarthritis (OA) and in cartilage cell death.
METHODS
Expression of ULK1, Beclin1, and LC3 was analyzed in normal and OA human articular cartilage and in knee joints of mice with aging-related and surgically induced OA, using immunohistochemistry and Western blotting. Poly(ADP-ribose) polymerase (PARP) p85 expression was used to determine the correlation between cell death and autophagy.
RESULTS
ULK1, Beclin1, and LC3 were constitutively expressed in normal human articular cartilage. ULK1, Beclin1, and LC3 protein expression was reduced in OA chondrocytes and cartilage, but these 3 proteins were strongly expressed in the OA cell clusters. In mouse knee joints, loss of glycosaminoglycans (GAGs) was observed at ages 9 months and 12 months and in the surgical OA model, 8 weeks after knee destabilization. Expression of ULK1, Beclin1, and LC3 decreased together with GAG loss, while PARP p85 expression was increased.
CONCLUSIONS
Autophagy may be a protective or homeostatic mechanism in normal cartilage. In contrast, human OA and aging-related and surgically induced OA in mice are associated with a reduction and loss of ULK1, Beclin1, and LC3 expression and a related increase in apoptosis. These results suggest that compromised autophagy represents a novel mechanism in the development of OA.
Publication
Journal: Journal of Biological Chemistry
October/28/2007
Abstract
Autophagy is a vital response to nutrient starvation. Here, we screened a kinase-specific siRNA library using an autophagy assay in human embryonic kidney 293 cells that measures lipidation of the marker protein GFP-LC3 following amino acid starvation. This screen identified ULK1 in addition to other novel candidates that could be confirmed with multiple siRNAs. Knockdown of ULK1, but not the related kinase ULK2, inhibited the autophagic response. Also, ULK1 knockdown inhibited rapamycin-induced autophagy consistent with a role downstream of mTOR. Overexpression of ULK1 inhibited autophagy and this inhibition was independent of its kinase activity. Deletion of the PDZ domain-binding Val-Tyr-Ala motif at the ULK1 C terminus generated a more potent dominant-negative protein. Further deletions revealed that the minimal ULK1 dominant-negative region could be mapped to residues 1-351. Full-length ULK1 localized to cytoplasmic structures, some of which were GFP-LC3-positive, and this localization required the conserved C-terminal domain. In contrast, ULK1-(1-351) was diffuse in the cytoplasm. These experiments reveal at least two domains in ULK1 which likely function via unique sets of effectors to regulate autophagy.
Publication
Journal: Molecular and Cellular Biology
January/13/2009
Abstract
The yeast Atg1 serine/threonine protein kinase and its mammalian homologs ULK1 and ULK2 play critical roles during the activation of autophagy. Previous studies have demonstrated that the conserved C-terminal domain (CTD) of ULK1 controls the regulatory function and localization of the protein. Here, we explored the role of kinase activity and intramolecular interactions to further understand ULK function. We demonstrate that the dominant-negative activity of kinase-dead mutants requires a 7-residue motif within the CTD. Our data lead to a model in which the functions of ULK1 and ULK2 are controlled by autophosphorylation and conformational changes involving exposure of the CTD. Additional mapping indicates that the CTD contains other distinct regions that direct membrane association and interaction with the putative human homologue of Atg13, which we have here characterized. Atg13 is required for autophagy and Atg9 trafficking during autophagy. However, Atg13 does not bind the 7-residue dominant-negative motif in the CTD of ULK proteins nor is the inhibitory activity of the CTDs rescued by Atg13 ectopic expression, suggesting that in mammalian cells, the CTD may interact with additional autophagy proteins.
Publication
Journal: PLoS ONE
April/26/2011
Abstract
Autophagy is a highly orchestrated intracellular bulk degradation process that is activated by various environmental stresses. The serine/threonine kinase ULK1, like its yeast homologue Atg1, is a key initiator of autophagy that is negatively regulated by the mTOR kinase. However, the molecular mechanism that controls the inhibitory effect of mTOR on ULK1-mediated autophagy is not fully understood. Here we identified AMPK, a central energy sensor, as a new ULK1-binding partner. We found that AMPK binds to the PS domain of ULK1 and this interaction is required for ULK1-mediated autophagy. Interestingly, activation of AMPK by AICAR induces 14-3-3 binding to the AMPK-ULK1-mTORC1 complex, which coincides with raptor Ser792 phosphorylation and mTOR inactivation. Consistently, AICAR induces autophagy in TSC2-deficient cells expressing wild-type raptor but not the mutant raptor that lacks the AMPK phosphorylation sites (Ser722 and Ser792). Taken together, these results suggest that AMPK association with ULK1 plays an important role in autophagy induction, at least in part, by phosphorylation of raptor to lift the inhibitory effect of mTOR on the ULK1 autophagic complex.
Publication
Journal: Ageing Research Reviews
July/2/2012
Abstract
Efficient control of energy metabolic homeostasis, enhanced stress resistance, and qualified cellular housekeeping are the hallmarks of improved healthspan and extended lifespan. AMPK signaling is involved in the regulation of all these characteristics via an integrated signaling network. Many studies with lower organisms have revealed that increased AMPK activity can extend the lifespan. Experiments in mammals have demonstrated that AMPK controls autophagy through mTOR and ULK1 signaling which augment the quality of cellular housekeeping. Moreover, AMPK-induced stimulation of FoxO/DAF-16, Nrf2/SKN-1, and SIRT1 signaling pathways improves cellular stress resistance. Furthermore, inhibition of NF-κB signaling by AMPK suppresses inflammatory responses. Emerging studies indicate that the responsiveness of AMPK signaling clearly declines with aging. The loss of sensitivity of AMPK activation to cellular stress impairs metabolic regulation, increases oxidative stress and reduces autophagic clearance. These age-related changes activate innate immunity defence, triggering a low-grade inflammation and metabolic disorders. We will review in detail the signaling pathways of this integrated network through which AMPK controls energy metabolism, autophagic degradation and stress resistance and ultimately the aging process.
load more...