Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(60K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Nature
April/25/1996
Abstract
The great increase in successful linkage studies in a number of higher eukaryotes during recent years has essentially resulted from major improvements in reference genetic linkage maps, which at present consist of short tandem repeat polymorphisms of simple sequences or microsatellites. We report here the last version of the Généthon human linkage map. This map consists of 5,264 short tandem (AC/TG)n repeat polymorphisms with a mean heterozygosity of 70%. The map spans a sex-averaged genetic distance of 3,699 cM and comprises 2,335 positions, of which 2,032 could be ordered with an odds ratio of at least 1,000:1 against alternative orders. The average interval size is 1.6 cM; 59% of the map is covered by intervals of 2 cM at most and 1% remains in intervals above 10 cM.
Publication
Journal: Journal of Cell Biology
August/10/2005
Abstract
Store-operated Ca2+ (SOC) channels regulate many cellular processes, but the underlying molecular components are not well defined. Using an RNA interference (RNAi)-based screen to identify genes that alter thapsigargin (TG)-dependent Ca2+ entry, we discovered a required and conserved role of Stim in SOC influx. RNAi-mediated knockdown of Stim in Drosophila S2 cells significantly reduced TG-dependent Ca2+ entry. Patch-clamp recording revealed nearly complete suppression of the Drosophila Ca2+ release-activated Ca2+ (CRAC) current that has biophysical characteristics similar to CRAC current in human T cells. Similarly, knockdown of the human homologue STIM1 significantly reduced CRAC channel activity in Jurkat T cells. RNAi-mediated knockdown of STIM1 inhibited TG- or agonist-dependent Ca2+ entry in HEK293 or SH-SY5Y cells. Conversely, overexpression of STIM1 in HEK293 cells modestly enhanced TG-induced Ca2+ entry. We propose that STIM1, a ubiquitously expressed protein that is conserved from Drosophila to mammalian cells, plays an essential role in SOC influx and may be a common component of SOC and CRAC channels.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Cell
December/8/1987
Abstract
We mutated, by gene targeting, the endogenous hypoxanthine phosphoribosyl transferase (HPRT) gene in mouse embryo-derived stem (ES) cells. A specialized construct of the neomycin resistance (neor) gene was introduced into an exon of a cloned fragment of the Hprt gene and used to transfect ES cells. Among the G418r colonies, 1/1000 were also resistant to the base analog 6-thioguanine (6-TG). The G418r, 6-TGr cells were all shown to be Hprt- as the result of homologous recombination with the exogenous, neor-containing, Hprt sequences. We have compared the gene-targeting efficiencies of two classes of neor-Hprt recombinant vectors: those that replace the endogenous sequence with the exogenous sequence and those that insert the exogenous sequence into the endogenous sequence. The targeting efficiencies of both classes of vectors are strongly dependent upon the extent of homology between exogenous and endogenous sequences. The protocol described herein should be useful for targeting mutations into any gene.
Publication
Journal: Neuron
March/14/2007
Abstract
Filamentous tau inclusions are hallmarks of Alzheimer's disease (AD) and related tauopathies, but earlier pathologies may herald disease onset. To investigate this, we studied wild-type and P301S mutant human tau transgenic (Tg) mice. Filamentous tau lesions developed in P301S Tg mice at 6 months of age, and progressively accumulated in association with striking neuron loss as well as hippocampal and entorhinal cortical atrophy by 9-12 months of age. Remarkably, hippocampal synapse loss and impaired synaptic function were detected in 3 month old P301S Tg mice before fibrillary tau tangles emerged. Prominent microglial activation also preceded tangle formation. Importantly, immunosuppression of young P301S Tg mice with FK506 attenuated tau pathology and increased lifespan, thereby linking neuroinflammation to early progression of tauopathies. Thus, hippocampal synaptic pathology and microgliosis may be the earliest manifestations of neurodegenerative tauopathies, and abrogation of tau-induced microglial activation could retard progression of these disorders.
Publication
Journal: FASEB Journal
February/8/2004
Abstract
Skeletal muscle atrophy is a debilitating response to starvation and many systemic diseases including diabetes, cancer, and renal failure. We had proposed that a common set of transcriptional adaptations underlie the loss of muscle mass in these different states. To test this hypothesis, we used cDNA microarrays to compare the changes in content of specific mRNAs in muscles atrophying from different causes. We compared muscles from fasted mice, from rats with cancer cachexia, streptozotocin-induced diabetes mellitus, uremia induced by subtotal nephrectomy, and from pair-fed control rats. Although the content of >90% of mRNAs did not change, including those for the myofibrillar apparatus, we found a common set of genes (termed atrogins) that were induced or suppressed in muscles in these four catabolic states. Among the strongly induced genes were many involved in protein degradation, including polyubiquitins, Ub fusion proteins, the Ub ligases atrogin-1/MAFbx and MuRF-1, multiple but not all subunits of the 20S proteasome and its 19S regulator, and cathepsin L. Many genes required for ATP production and late steps in glycolysis were down-regulated, as were many transcripts for extracellular matrix proteins. Some genes not previously implicated in muscle atrophy were dramatically up-regulated (lipin, metallothionein, AMP deaminase, RNA helicase-related protein, TG interacting factor) and several growth-related mRNAs were down-regulated (P311, JUN, IGF-1-BP5). Thus, different types of muscle atrophy share a common transcriptional program that is activated in many systemic diseases.
Publication
Journal: Journal of Biological Chemistry
April/17/2005
Abstract
Alzheimer's disease (AD) involves amyloid beta (Abeta) accumulation, oxidative damage, and inflammation, and risk is reduced with increased antioxidant and anti-inflammatory consumption. The phenolic yellow curry pigment curcumin has potent anti-inflammatory and antioxidant activities and can suppress oxidative damage, inflammation, cognitive deficits, and amyloid accumulation. Since the molecular structure of curcumin suggested potential Abeta binding, we investigated whether its efficacy in AD models could be explained by effects on Abeta aggregation. Under aggregating conditions in vitro, curcumin inhibited aggregation (IC(50) = 0.8 microM) as well as disaggregated fibrillar Abeta40 (IC(50) = 1 microM), indicating favorable stoichiometry for inhibition. Curcumin was a better Abeta40 aggregation inhibitor than ibuprofen and naproxen, and prevented Abeta42 oligomer formation and toxicity between 0.1 and 1.0 microM. Under EM, curcumin decreased dose dependently Abeta fibril formation beginning with 0.125 microM. The effects of curcumin did not depend on Abeta sequence but on fibril-related conformation. AD and <em>Tg</em>2576 mice brain sections incubated with curcumin revealed preferential labeling of amyloid plaques. In vivo studies showed that curcumin injected peripherally into aged <em>Tg</em> mice crossed the blood-brain barrier and bound plaques. When fed to aged <em>Tg</em>2576 mice with advanced amyloid accumulation, curcumin labeled plaques and reduced amyloid levels and plaque burden. Hence, curcumin directly binds small beta-amyloid species to block aggregation and fibril formation in vitro and in vivo. These data suggest that low dose curcumin effectively disaggregates Abeta as well as prevents fibril and oligomer formation, supporting the rationale for curcumin use in clinical trials preventing or treating AD.
Publication
Journal: Nature
May/17/1995
Abstract
The autosomal recessive mouse mutation reeler leads to impaired motor coordination, tremors and ataxia. Neurons in affected mice fail to reach their correct locations in the developing brain, disrupting the organization of the cerebellar and cerebral cortices and other laminated regions. Here we use a previously characterized reeler allele (rl(tg)) to close a gene, reelin, deleted in two reeler alleles. Normal but not mutant mice express reelin in embryonic and postnatal neurons during periods of neuronal migration. The encoded protein resembles extracellular matrix proteins involved in cell adhesion. The reeler phenotype thus seems to reflect a failure of early events associated with brain lamination which are normally controlled by reelin.
Publication
Journal: Science
July/30/2006
Abstract
Small noncoding RNAs regulate processes essential for cell growth and development, including mRNA degradation, translational repression, and transcriptional gene silencing (TGS). During a search for candidate mammalian factors for TGS, we purified a complex that contains small RNAs and Riwi, the rat homolog to human Piwi. The RNAs, frequently 29 to 30 nucleotides in length, are called Piwi-interacting RNAs (piRNAs), 94% of which map to 100 defined (< or = 101 kb) genomic regions. Within these regions, the piRNAs generally distribute across only one genomic strand or distribute on two strands but in a divergent, nonoverlapping manner. Preparations of piRNA complex (piRC) contain rRecQ1, which is homologous to qde-3 from Neurospora, a gene implicated in silencing pathways. Piwi has been genetically linked to TGS in flies, and slicer activity cofractionates with the purified complex. These results are consistent with a gene-silencing role for piRC in mammals.
Publication
Journal: Science
January/10/1991
Abstract
A technique was developed for studying protein-DNA recognition that can be applied to any purified protein, partially purified protein, or cloned gene. From oligonucleotides in which particular positions are of random sequence, that subset to which a given protein binds is amplified by the polymerase chain reaction and sequenced as a pool. These selected and amplified binding site (SAAB) "imprints" provide a characteristic set of preferred sequences for protein binding. With this technique, it was shown that homo- and heterooligomers of the helix-loop-helix proteins MyoD and E2A recognize a common consensus sequence, CA--TG, but otherwise bind to flanking and internal positions with different sequence preferences that suggest half-site recognition. These findings suggest that different combinations of dimeric proteins can have different binding sequence preferences.
Publication
Journal: Cell
July/23/2017
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease with no effective treatments. Due to cellular heterogeneity, defining the roles of immune cell subsets in AD onset and progression has been challenging. Using transcriptional single-cell sorting, we comprehensively map all immune populations in wild-type and AD-transgenic (Tg-AD) mouse brains. We describe a novel microglia type associated with neurodegenerative diseases (DAM) and identify markers, spatial localization, and pathways associated with these cells. Immunohistochemical staining of mice and human brain slices shows DAM with intracellular/phagocytic Aβ particles. Single-cell analysis of DAM in Tg-AD and triggering receptor expressed on myeloid cells 2 (Trem2)-/- Tg-AD reveals that the DAM program is activated in a two-step process. Activation is initiated in a Trem2-independent manner that involves downregulation of microglia checkpoints, followed by activation of a Trem2-dependent program. This unique microglia-type has the potential to restrict neurodegeneration, which may have important implications for future treatment of AD and other neurodegenerative diseases. VIDEO ABSTRACT.
Publication
Journal: Science
August/9/2004
Abstract
Recombinant mouse prion protein (recMoPrP) produced in Escherichia coli was polymerized into amyloid fibrils that represent a subset of beta sheet-rich structures. Fibrils consisting of recMoPrP(89-230) were inoculated intracerebrally into transgenic (Tg) mice expressing MoPrP(89-231). The mice developed neurologic dysfunction between 380 and 660 days after inoculation. Brain extracts showed protease-resistant PrP by Western blotting; these extracts transmitted disease to wild-type FVB mice and Tg mice overexpressing PrP, with incubation times of 150 and 90 days, respectively. Neuropathological findings suggest that a novel prion strain was created. Our results provide compelling evidence that prions are infectious proteins.
Publication
Journal: Science
October/6/1991
Abstract
The 3 angstrom resolution crystal structure of the Escherichia coli catabolite gene activator protein (CAP) complexed with a 30-base pair DNA sequence shows that the DNA is bent by 90 degrees. This bend results almost entirely from two 40 degrees kinks that occur between TG/CA base pairs at positions 5 and 6 on each side of the dyad axis of the complex. DNA sequence discrimination by CAP derives both from sequence-dependent distortion of the DNA helix and from direct hydrogen-bonding interactions between three protein side chains and the exposed edges of three base pairs in the major groove of the DNA. The structure of this transcription factor--DNA complex provides insights into possible mechanisms of transcription activation.
Publication
Journal: Journal of Immunology
January/18/2000
Abstract
CD4+CD25+ T cells represent a unique population of "professional" suppressor T cells that prevent induction of organ-specific autoimmune disease. In vitro, CD4+CD25+ cells were anergic to simulation via the TCR and when cultured with CD4+CD25- cells, markedly suppressed polyclonal T cell proliferation by specifically inhibiting the production of IL-2. Suppression was cytokine independent, cell contact dependent, and required activation of the suppressors via their TCR. Further characterization of the CD4+CD25+ population demonstrated that they do not contain memory or activated T cells and that they act through an APC-independent mechanism. CD4+CD25+ T cells isolated from TCR transgenic (Tg) mice inhibited responses of CD4+CD25- Tg T cells to the same Ag, but also inhibited the Ag-specific responses of Tg cells specific for a distinct Ag. Suppression required that both peptide/MHC complexes be present in the same culture, but the Ags could be presented by two distinct populations of APC. When CD4+CD25+ T cells were cultured with anti-CD3 and IL-2, they expanded, remained anergic, and in the absence of restimulation via their TCR, suppressed Ag-specific responses of CD4+CD25- T cells from multiple TCR transgenics. Collectively, these data demonstrate that CD4+CD25+ T cells require activation via their TCR to become suppressive, but once activated, their suppressor effector function is completely nonspecific. The cell surface molecules involved in this T-T interaction remain to be characterized.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/22/2000
Abstract
To determine the mechanism of the cardiac dilatation and reduced contractility of obese Zucker Diabetic Fatty rats, myocardial triacylglycerol (TG) was assayed chemically and morphologically. TG was high because of underexpression of fatty acid oxidative enzymes and their transcription factor, peroxisome proliferator-activated receptor-alpha. Levels of ceramide, a mediator of apoptosis, were 2-3 times those of controls and inducible nitric oxide synthase levels were 4 times greater than normal. Myocardial DNA laddering, an index of apoptosis, reached 20 times the normal level. Troglitazone therapy lowered myocardial TG and ceramide and completely prevented DNA laddering and loss of cardiac function. In this paper, we conclude that cardiac dysfunction in obesity is caused by lipoapoptosis and is prevented by reducing cardiac lipids.
Publication
Journal: American Journal of Human Genetics
March/20/1989
Abstract
The human genome contains approximately 50,000 copies of an interspersed repeat with the sequence (dT-dG)n, where n = approximately 10-60. In humans, (TG)n repeats have been found in several sequenced regions. Since minisatellite regions with larger repeat elements often display extensive length polymorphisms, we suspected that (TG)n repeats ("microsatellites") might also be polymorphic. Using the polymerase chain reaction to amplify a (TG)n microsatellite in the human cardiac actin gene, we detected 12 different allelic fragments in 37 unrelated individuals, 32 of whom were heterozygous. Codominant Mendelian inheritance of fragments was observed in three families with a total of 24 children. Because of the widespread distribution of (TG)n microsatellites, polymorphisms of this type may be generally abundant and present in regions where minisatellites are rare, making such microsatellite loci very useful for linkage studies in humans.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
October/25/2007
Abstract
The recent discovery that hydrogen sulfide (H(2)S) is an endogenously produced gaseous second messenger capable of modulating many physiological processes, much like nitric oxide, prompted us to investigate the potential of H(2)S as a cardioprotective agent. In the current study, we demonstrate that the delivery of H(2)S at the time of reperfusion limits infarct size and preserves left ventricular (LV) function in an in vivo model of myocardial ischemia-reperfusion (MI-R). This observed cytoprotection is associated with an inhibition of myocardial inflammation and a preservation of both mitochondrial structure and function after I-R injury. Additionally, we show that modulation of endogenously produced H(2)S by cardiac-specific overexpression of cystathionine gamma-lyase (alpha-MHC-CGL-Tg mouse) significantly limits the extent of injury. These findings demonstrate that H(2)S may be of value in cytoprotection during the evolution of myocardial infarction and that either administration of H(2)S or the modulation of endogenous production may be of clinical benefit in ischemic disorders.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
November/25/2013
Abstract
A simple and robust method for targeted mutagenesis in zebrafish has long been sought. Previous methods generate monoallelic mutations in the germ line of F0 animals, usually delaying homozygosity for the mutation to the F2 generation. Generation of robust biallelic mutations in the F0 would allow for phenotypic analysis directly in injected animals. Recently the type II prokaryotic clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) system has been adapted to serve as a targeted genome mutagenesis tool. Here we report an improved CRISPR/Cas system in zebrafish with custom guide RNAs and a zebrafish codon-optimized Cas9 protein that efficiently targeted a reporter transgene Tg(-5.1mnx1:egfp) and four endogenous loci (tyr, golden, mitfa, and ddx19). Mutagenesis rates reached 75-99%, indicating that most cells contained biallelic mutations. Recessive null-like phenotypes were observed in four of the five targeting cases, supporting high rates of biallelic gene disruption. We also observed efficient germ-line transmission of the Cas9-induced mutations. Finally, five genomic loci can be targeted simultaneously, resulting in multiple loss-of-function phenotypes in the same injected fish. This CRISPR/Cas9 system represents a highly effective and scalable gene knockout method in zebrafish and has the potential for applications in other model organisms.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Journal of Experimental Medicine
July/15/2012
Abstract
The accumulation of misfolded proteins is a fundamental pathogenic process in neurodegenerative diseases. However, the factors that trigger aggregation of α-Synuclein (α-Syn), the principal component of the intraneuronal inclusions known as Lewy bodies (LBs), and Lewy neurites (LNs), which characterize Parkinson's disease (PD) and dementia with LBs (DLB), are poorly understood. We show here that in young asymptomatic α-Syn transgenic (Tg) mice, intracerebral injections of brain homogenates derived from older Tg mice exhibiting α-Syn pathology accelerate both the formation of intracellular LB/LN-like inclusions and the onset of neurological symptoms in recipient animals. Pathological α-Syn propagated along major central nervous system (CNS) pathways to regions far beyond injection sites and reduced survival with a highly reproducible interval from injection to death in inoculated animals. Importantly, inoculation with α-Syn amyloid fibrils assembled from recombinant human α-Syn induced identical consequences. Furthermore, we show for the first time that synthetic α-Syn fibrils are wholly sufficient to initiate PD-like LBs/LNs and to transmit disease in vivo. Thus, our data point to a prion-like cascade in synucleinopathies whereby cell-cell transmission and propagation of misfolded α-Syn underlie the CNS spread of LBs/LNs. These findings open up new avenues for understanding the progression of PD and for developing novel therapeutics.
Publication
Journal: Journal of Clinical Investigation
June/16/2004
Abstract
We explored the effects of bile acids on triglyceride (TG) homeostasis using a combination of molecular, cellular, and animal models. Cholic acid (CA) prevents hepatic TG accumulation, VLDL secretion, and elevated serum TG in mouse models of hypertriglyceridemia. At the molecular level, CA decreases hepatic expression of SREBP-1c and its lipogenic target genes. Through the use of mouse mutants for the short heterodimer partner (SHP) and liver X receptor (LXR) alpha and beta, we demonstrate the critical dependence of the reduction of SREBP-1c expression by either natural or synthetic farnesoid X receptor (FXR) agonists on both SHP and LXR alpha and LXR beta. These results suggest that strategies aimed at increasing FXR activity and the repressive effects of SHP should be explored to correct hypertriglyceridemia.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Science
January/10/1991
Abstract
While it has been known for some time that the c-Myc protein binds to random DNA sequences, no sequence-specific binding activity has been detected. At its carboxyl terminus, c-Myc contains a basic--helix-loop-helix (bHLH) motif, which is important for dimerization and specific DNA binding, as demonstrated for other bHLH protein family members. Of those studied, most bHLH proteins bind to sites that contain a CA- -TG consensus. In this study, the technique of selected and amplified binding-sequence (SAAB) imprinting was used to identify a DNA sequence that was recognized by c-Myc. A purified carboxyl-terminal fragment of human c-Myc that contained the bHLH domain bound in vitro in a sequence-specific manner to the sequence, CACGTG. These results suggest that some of the biological functions of Myc family proteins are accomplished by sequence-specific DNA binding that is mediated by the carboxyl-terminal region of the protein.
Publication
Journal: Journal of Clinical Investigation
October/1/2009
Abstract
Sirtuin 3 (SIRT3) is a member of the sirtuin family of proteins that promote longevity in many organisms. Increased expression of SIRT3 has been linked to an extended life span in humans. Here, we have shown that Sirt3 protects the mouse heart by blocking the cardiac hypertrophic response. Although Sirt3-deficient mice appeared to have normal activity, they showed signs of cardiac hypertrophy and interstitial fibrosis at 8 weeks of age. Application of hypertrophic stimuli to these mice produced a severe cardiac hypertrophic response, whereas Sirt3-expressing Tg mice were protected from similar stimuli. In primary cultures of cardiomyocytes, Sirt3 blocked cardiac hypertrophy by activating the forkhead box O3a-dependent (Foxo3a-dependent), antioxidant-encoding genes manganese superoxide dismutase (MnSOD) and catalase (Cat), thereby decreasing cellular levels of ROS. Reduced ROS levels suppressed Ras activation and downstream signaling through the MAPK/ERK and PI3K/Akt pathways. This resulted in repressed activity of transcription factors, specifically GATA4 and NFAT, and translation factors, specifically eukaryotic initiation factor 4E (elf4E) and S6 ribosomal protein (S6P), which are involved in the development of cardiac hypertrophy. These results demonstrate that SIRT3 is an endogenous negative regulator of cardiac hypertrophy, which protects hearts by suppressing cellular levels of ROS.
Publication
Journal: Neuron
November/1/2004
Abstract
LRP (low-density lipoprotein receptor-related protein) is linked to Alzheimer's disease (AD). Here, we report amyloid beta-peptide Abeta40 binds to immobilized LRP clusters II and IV with high affinity (Kd = 0.6-1.2 nM) compared to Abeta42 and mutant Abeta, and LRP-mediated Abeta brain capillary binding, endocytosis, and transcytosis across the mouse blood-brain barrier are substantially reduced by the high beta sheet content in Abeta and deletion of the receptor-associated protein gene. Despite low Abeta production in the brain, transgenic mice expressing low LRP-clearance mutant Abeta develop robust Abeta cerebral accumulations much earlier than Tg-2576 Abeta-overproducing mice. While Abeta does not affect LRP internalization and synthesis, it promotes proteasome-dependent LRP degradation in endothelium at concentrations>> 1 microM, consistent with reduced brain capillary LRP levels in Abeta-accumulating transgenic mice, AD, and patients with cerebrovascular beta-amyloidosis. Thus, low-affinity LRP/Abeta interaction and/or Abeta-induced LRP loss at the BBB mediate brain accumulation of neurotoxic Abeta.
Publication
Journal: Cell Metabolism
January/4/2007
Abstract
Adipose triglyceride lipase (ATGL) was recently identified as an important triacylglycerol (TG) hydrolase promoting the catabolism of stored fat in adipose and nonadipose tissues. We now demonstrate that efficient ATGL enzyme activity requires activation by CGI-58. Mutations in the human CGI-58 gene are associated with Chanarin-Dorfman Syndrome (CDS), a rare genetic disease where TG accumulates excessively in multiple tissues. CGI-58 interacts with ATGL, stimulating its TG hydrolase activity up to 20-fold. Alleles of CGI-58 carrying point mutations associated with CDS fail to activate ATGL. Moreover, CGI-58/ATGL coexpression attenuates lipid accumulation in COS-7 cells. Antisense RNA-mediated reduction of CGI-58 expression in 3T3-L1 adipocytes inhibits TG mobilization. Finally, expression of functional CGI-58 in CDS fibroblasts restores lipolysis and reverses the abnormal TG accumulation typical for CDS. These data establish an important biochemical function for CGI-58 in the lipolytic degradation of fat, implicating this lipolysis activator in the pathogenesis of CDS.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/6/2009
Abstract
Visceral adipose tissue (VAT) is an important risk factor for obesity-related metabolic disorders. Therefore, a reduction in VAT has become a key goal in obesity management. However, VAT is correlated with intrahepatic triglyceride (IHTG) content, so it is possible that IHTG, not VAT, is a better marker of metabolic disease. We determined the independent association of IHTG and VAT to metabolic function, by evaluating groups of obese subjects, who differed in IHTG content (high or normal) but matched on VAT volume or differed in VAT volume (high or low) but matched on IHTG content. Stable isotope tracer techniques and the euglycemic-hyperinsulinemic clamp procedure were used to assess insulin sensitivity and very-low-density lipoprotein-triglyceride (VLDL-TG) secretion rate. Tissue biopsies were obtained to evaluate cellular factors involved in ectopic triglyceride accumulation. Hepatic, adipose tissue and muscle insulin sensitivity were 41, 13, and 36% lower (P < 0.01), whereas VLDL-triglyceride secretion rate was almost double (P < 0.001), in subjects with higher than normal IHTG content, matched on VAT. No differences in insulin sensitivity or VLDL-TG secretion were observed between subjects with different VAT volumes, matched on IHTG content. Adipose tissue CD36 expression was lower (P < 0.05), whereas skeletal muscle CD36 expression was higher (P < 0.05), in subjects with higher than normal IHTG. These data demonstrate that IHTG, not VAT, is a better marker of the metabolic derangements associated with obesity. Furthermore, alterations in tissue fatty acid transport could be involved in the pathogenesis of ectopic triglyceride accumulation by redirecting plasma fatty acid uptake from adipose tissue toward other tissues.
load more...