Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(1K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Breast Cancer Research and Treatment
January/13/2011
Abstract
Validating prognostic or predictive candidate genes in appropriately powered breast cancer cohorts are of utmost interest. Our aim was to develop an online tool to draw survival plots, which can be used to assess the relevance of the expression levels of various genes on the clinical outcome both in untreated and treated breast cancer patients. A background database was established using gene expression data and survival information of 1,809 patients downloaded from GEO (Affymetrix HGU133A and HGU133+2 microarrays). The median relapse free survival is 6.43 years, 968/1,231 patients are estrogen-receptor (ER) positive, and 190/1,369 are lymph-node positive. After quality control and normalization only probes present on both Affymetrix platforms were retained (n = 22,277). In order to analyze the prognostic value of a particular gene, the cohorts are divided into two groups according to the median (or upper/lower quartile) expression of the gene. The two groups can be compared in terms of relapse free survival, overall survival, and distant metastasis free survival. A survival curve is displayed, and the hazard ratio with 95% confidence intervals and logrank P value are calculated and displayed. Additionally, three subgroups of patients can be assessed: systematically untreated patients, endocrine-treated ER positive patients, and patients with a distribution of clinical characteristics representative of those seen in general clinical practice in the US. Web address: www.kmplot.com . We used this integrative data analysis tool to confirm the prognostic power of the proliferation-related genes TOP2A and TOP2B, MKI67, CCND2, CCND3, CCNDE2, as well as CDKN1A, and TK2. We also validated the capability of microarrays to determine estrogen receptor status in 1,231 patients. The tool is highly valuable for the preliminary assessment of biomarkers, especially for research groups with limited bioinformatic resources.
Publication
Journal: Science
January/22/2014
Abstract
The bacterial clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system for genome editing has greatly expanded the toolbox for mammalian genetics, enabling the rapid generation of isogenic cell lines and mice with modified alleles. Here, we describe a pooled, loss-of-function genetic screening approach suitable for both positive and negative selection that uses a genome-scale lentiviral single-guide RNA (sgRNA) library. sgRNA expression cassettes were stably integrated into the genome, which enabled a complex mutant pool to be tracked by massively parallel sequencing. We used a library containing 73,000 sgRNAs to generate knockout collections and performed screens in two human cell lines. A screen for resistance to the nucleotide analog 6-thioguanine identified all expected members of the DNA mismatch repair pathway, whereas another for the DNA topoisomerase II (TOP2A) poison etoposide identified TOP2A, as expected, and also cyclin-dependent kinase 6, CDK6. A negative selection screen for essential genes identified numerous gene sets corresponding to fundamental processes. Last, we show that sgRNA efficiency is associated with specific sequence motifs, enabling the prediction of more effective sgRNAs. Collectively, these results establish Cas9/sgRNA screens as a powerful tool for systematic genetic analysis in mammalian cells.
Publication
Journal: Cancer Research
June/9/2008
Abstract
The majority of BRCA1-associated breast cancers are basal cell-like, which is associated with a poor outcome. Using a spontaneous mouse mammary tumor model, we show that platinum compounds, which generate DNA breaks during the repair process, are more effective than doxorubicin in Brca1/p53-mutated tumors. At 0.5 mg/kg of daily cisplatin treatment, 80% primary tumors (n = 8) show complete pathologic response. At greater dosages, 100% show complete response (n = 19). However, after 2 to 3 months of complete remission following platinum treatment, tumors relapse and become refractory to successive rounds of treatment. Approximately 3.8% to 8.0% (mean, 5.9%) of tumor cells express the normal mammary stem cell markers, CD29(hi)24(med), and these cells are tumorigenic, whereas CD29(med)24(-/lo) and CD29(med)24(hi) cells have diminished tumorigenicity or are nontumorigenic, respectively. In partially platinum-responsive primary transplants, 6.6% to 11.0% (mean, 8.8%) tumor cells are CD29(hi)24(med); these populations significantly increase to 16.5% to 29.2% (mean, 22.8%; P < 0.05) in platinum-refractory secondary tumor transplants. Further, refractory tumor cells have greater colony-forming ability than the primary transplant-derived cells in the presence of cisplatin. Expression of a normal stem cell marker, Nanog, is decreased in the CD29(hi)24(med) populations in the secondary transplants. Top2A expression is also down-regulated in secondary drug-resistant tumor populations and, in one case, was accompanied by genomic deletion of Top2A. These studies identify distinct cancer cell populations for therapeutic targeting in breast cancer and implicate clonal evolution and expansion of cancer stem-like cells as a potential cause of chemoresistance.
Publication
Journal: Gastroenterology
January/29/2007
Abstract
OBJECTIVE
Small liver nodules approximately 2 cm are difficult to characterize by radiologic or pathologic examination. Our aim was to identify a molecular signature to diagnose early hepatocellular carcinoma (HCC).
METHODS
The transcriptional profiles of 55 candidate genes were assessed by quantitative real-time reverse-transcription polymerase chain reaction (RT-PCR) in 17 dysplastic nodules (diameter, 10 mm) and 20 early HCC (diameter, 18 mm) from HCV cirrhotic patients undergoing resection/transplantation and 10 nontumoral cirrhotic tissues and 10 normal liver tissues. Candidate genes were confirmed by quantitative RT-PCR in 20 advanced HCCs and by immunohistochemistry in 75 samples and validated in an independent set of 29 samples (dysplastic nodules [10] and small HCC [19; diameter, 20 mm]).
RESULTS
Twelve genes were significantly, differentially expressed in early HCCs compared with dysplastic nodules (>2-fold change; area under the receiver operating characteristic curve>> or =0.8): this included TERT, GPC3, gankyrin, survivin, TOP2A, LYVE1, E-cadherin, IGFBP3, PDGFRA, TGFA, cyclin D1, and HGF. Logistic regression analysis identified a 3-gene set including GPC3 (18-fold increase in HCC, P = .01), LYVE1 (12-fold decrease in HCC, P = .0001), and survivin (2.2-fold increase in HCC, P = .02), which had a discriminative accuracy of 94%. The validity of the gene signature was confirmed in a prospective testing set. GPC3 immunostaining was positive in all HCCs and negative in dysplastic nodules (22/22 vs 0/14, respectively, P < .001). Nuclear staining for survivin was positive in 12 of 13 advanced HCC cases and in 1 of 9 early tumors.
CONCLUSIONS
Molecular data based on gene transcriptional profiles of a 3-gene set allow a reliable diagnosis of early HCC. Immunostaining of GPC3 confirms the diagnosis of HCC.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
July/30/2008
Abstract
Topoisomerase poisons are chemotherapeutic agents that are used extensively for treating human malignancies. These drugs can be highly effective, yet tumors are frequently refractory to treatment or become resistant upon tumor relapse. Using a pool-based RNAi screening approach and a well characterized mouse model of lymphoma, we explored the genetic basis for heterogeneous responses to topoisomerase poisons in vitro and in vivo. These experiments identified Top2A expression levels as major determinants of response to the topoisomerase 2 poison doxorubicin and showed that suppression of Top2A produces resistance to doxorubicin in vitro and in vivo. Analogously, using a targeted RNAi approach, we demonstrated that suppression of Top1 produces resistance to the topoisomerase 1 poison camptothecin yet hypersensitizes cancer cells to doxorubicin. Importantly, lymphomas relapsing after treatment display spontaneous changes in topoisomerase levels as predicted by in vitro gene knockdown studies. These results highlight the utility of pooled shRNA screens for identifying genetic determinants of chemotherapy response and suggest strategies for improving the effectiveness of topoisomerase poisons in the clinic.
Publication
Journal: American Journal of Pathology
September/21/2003
Abstract
Diffuse astrocytoma of World Health Organization (WHO) grade II has an inherent tendency to spontaneously progress to anaplastic astrocytoma (WHO grade III) and/or glioblastoma (WHO grade IV). The molecular basis of astrocytoma progression is still poorly understood, in particular with respect to the progression-associated changes at the mRNA level. Therefore, we compared the transcriptional profile of approximately 6800 genes in primary WHO grade II gliomas and corresponding recurrent high-grade (WHO grade III or IV) gliomas from eight patients using oligonucleotide-based microarray analysis. We identified 66 genes whose mRNA levels differed significantly (P < 0.01,>> or =2-fold change) between the primary and recurrent tumors. The microarray data were corroborated by real-time reverse transcription-polymerase chain reaction analysis of 12 selected genes, including 7 genes with increased expression and 5 genes with reduced expression on progression. In addition, the expression of these 12 genes was determined in an independent series of 43 astrocytic gliomas (9 diffuse astrocytomas, 10 anaplastic astrocytomas, 17 primary, and 7 secondary glioblastomas). These analyses confirmed that the transcript levels of nine of the selected genes (COL4A2, FOXM1, MGP, TOP2A, CENPF, IGFBP4, VEGFA, ADD3, and CAMK2G) differed significantly in WHO grade II astrocytomas as compared to anaplastic astrocytomas and/or glioblastomas. Thus, we identified and validated a set of interesting candidate genes whose differential expression likely plays a role in astrocytoma progression.
Publication
Journal: Nature Reviews Molecular Cell Biology
May/14/2017
Abstract
Topoisomerases introduce transient DNA breaks to relax supercoiled DNA, remove catenanes and enable chromosome segregation. Human cells encode six topoisomerases (TOP1, TOP1mt, TOP2α, TOP2β, TOP3α and TOP3β), which act on a broad range of DNA and RNA substrates at the nuclear and mitochondrial genomes. Their catalytic intermediates, the topoisomerase cleavage complexes (TOPcc), are therapeutic targets of various anticancer drugs. TOPcc can also form on damaged DNA during replication and transcription, and engage specific repair pathways, such as those mediated by tyrosyl-DNA phosphodiesterase 1 (TDP1) and TDP2 and by endonucleases (MRE11, XPF-ERCC1 and MUS81). Here, we review the roles of topoisomerases in mediating chromatin dynamics, transcription, replication, DNA damage repair and genomic stability, and discuss how deregulation of topoisomerases can cause neurodegenerative diseases, immune disorders and cancer.
Publication
Journal: Breast Cancer Research and Treatment
September/15/2008
Abstract
BACKGROUND
We analysed the clinical features, distribution of basal markers, prevalence of oncogene amplification, and outcome of triple negative (TN) compared to those of non-TN cancers in a series of adjuvant-anthracycline treated breast cancer patients.
METHODS
We examined the prognostic impact of the TN and BL phenotype in 245 breast cancer patients uniformly treated with adjuvant anthracycline-based chemotherapy following primary surgery, with regards to local relapse-free (LRFS), metastasis free (MFS), and breast cancer specific survival (BCSS). A comparative analysis of the clinicopathological characteristics, expression of basal markers (cytokeratins (Cks) 5/6, 14, 17, EGFR, and caveolin 1 and 2), MIB-1, p53 and topoisomerase II alpha, and prevalence of CCND1, MYC and TOP2A amplification in TN and non-TN breast tumours was performed.
RESULTS
TN cancers were significantly associated with the expression of basal markers (all P < 0.0001). However 19.4% of TN tumours were negative for basal markers, whilst 7.3% of non-TN tumours expressed basal markers. TN phenotype was significantly associated with p53, MIB-1 and topoisomerase II alpha (all, P < 0.01) expression. No TN cancer harboured amplification of CCND1 or TOP2A. In univariate analysis, TN and BL phenotype were significantly associated with shorter MFS (both, P < 0.01) and BCSS (both, P < 0.005) but not LRFS.
CONCLUSIONS
Despite treatment with standard dose anthracycline-based chemotherapy, the clinical outcome of TN and BL cancers remains poor. Alternative chemotherapeutic regimens and/or novel therapeutic approaches are warranted. Although a significant phenotypic overlap exists between TN and basal-like tumours, the TN phenotype is not an ideal surrogate marker for basal-like breast cancers.
Publication
Journal: American Journal of Pathology
April/10/2003
Abstract
Comprehensive expression profiling of tumors using DNA microarrays has been used recently for molecular classification and biomarker discovery, as well as a tool to identify and investigate genes involved in tumorigenesis. Application of this approach to a cohort of benign and malignant adrenocortical tissues would be potentially informative in all of these aspects. In this study, we generated transcriptional profiles of 11 adrenocortical carcinomas (ACCs), 4 adrenocortical adenomas (ACAs), 3 normal adrenal cortices (NCs), and 1 macronodular hyperplasia (MNH) using Affymetrix HG_U95Av2 oligonucleotide arrays representing approximately 10,500 unique genes. The expression data set was used for unsupervised hierarchical cluster analysis as well as principal component analysis to visually represent the expression data. An analysis of variance on the three classes (NC, ACA plus MNH, and ACC) revealed 91 genes that displayed at least threefold differential expression between the ACC cohort and both the NC and ACA cohorts at a significance level of P < 0.01. Included in these 91 genes were those known to be up-regulated in adrenocortical tumors, such as insulin-like growth factor (IGF2), as well as novel differentially expressed genes such as osteopontin (SPP) and serine threonine kinase 15 (STK15). Increased expression of IGF2 was identified in 10 of 11 ACCs (90.9%) and was verified by quantitative reverse transcriptase-polymerase chain reaction. Select proliferation-related genes (TOP2A and Ki-67) were validated at the protein level using immunohistochemistry and adrenocortical tissue microarrays. Our results demonstrated significant and consistent gene expression changes in ACCs compared to benign adrenocortical lesions. Moreover, we identified several genes that represent potential diagnostic markers and may play a role in the pathogenesis of ACC.
Publication
Journal: Current Opinion in Oncology
September/26/2011
Abstract
OBJECTIVE
Liposarcoma, a rare disease, is classified into five histologic subtypes. These include well differentiated liposarcoma (WDLS) and dedifferentiated liposarcoma (DDLS), both characterized by chromosome 12q13-15 amplification. This review will focus on the clinical management of WDLS and DDLS and examine recent molecular studies that have the potential to affect clinical management.
RESULTS
Outcome of patients with WDLS and DDLS depends on completeness of surgical resection as well as tumor location and histologic subtype. Risk of recurrence is high for patients with dedifferentiated histology or retroperitoneal location. We now understand that surgical outcomes are poor for patients with rapidly growing or incompletely resectable tumors, so these patients should be managed nonoperatively. Radiation and chemotherapy have low response rates in WDLS and DDLS, but novel agents targeted at chromosome 12 gene products MDM2 and CDK4 have shown promise in preclinical studies and are being tested in clinical trials. Cell line, tissue microarray, and genomic analyses have identified additional targets including ZIC1, TOP2A, AURKA, and IGF-1R, which could form the basis of future therapies.
CONCLUSIONS
Although complete surgical resection is currently the most effective treatment for WDLS and DDLS, the majority of patients with retroperitoneal liposarcoma will eventually have recurrence and die of disease. It is hoped that a multimodality approach, which incorporates targeted therapies and complete surgical resection, will significantly improve patient outcomes.
Publication
Journal: Nature
June/20/2013
Abstract
Recent exon-sequencing studies of human tumours have revealed that subunits of BAF (mammalian SWI/SNF) complexes are mutated in more than 20% of all human malignancies, but the mechanisms involved in tumour suppression are unclear. BAF chromatin-remodelling complexes are polymorphic assemblies that use energy provided by ATP hydrolysis to regulate transcription through the control of chromatin structure and the placement of Polycomb repressive complex 2 (PRC2) across the genome. Several proteins dedicated to this multisubunit complex, including BRG1 (also known as SMARCA4) and BAF250a (also known as ARID1A), are mutated at frequencies similar to those of recognized tumour suppressors. In particular, the core ATPase BRG1 is mutated in 5-10% of childhood medulloblastomas and more than 15% of Burkitt's lymphomas. Here we show a previously unknown function of BAF complexes in decatenating newly replicated sister chromatids, a requirement for proper chromosome segregation during mitosis. We find that deletion of Brg1 in mouse cells, as well as the expression of BRG1 point mutants identified in human tumours, leads to anaphase bridge formation (in which sister chromatids are linked by catenated strands of DNA) and a G2/M-phase block characteristic of the decatenation checkpoint. Endogenous BAF complexes interact directly with endogenous topoisomerase IIα (TOP2A) through BAF250a and are required for the binding of TOP2A to approximately 12,000 sites across the genome. Our results demonstrate that TOP2A chromatin binding is dependent on the ATPase activity of BRG1, which is compromised in oncogenic BRG1 mutants. These studies indicate that the ability of TOP2A to prevent DNA entanglement at mitosis requires BAF complexes and suggest that this activity contributes to the role of BAF subunits as tumour suppressors.
Publication
Journal: Journal of Clinical Oncology
November/20/2005
Abstract
OBJECTIVE
The aim of the study was to evaluate the predictive value of HER2 and topoisomerase IIalpha gene (TOP2A) for the efficacy of epirubicin in the adjuvant setting of breast cancer patients.
METHODS
In the Danish Breast Cancer Cooperative Group trial 89D, 980 pre- and postmenopausal primary patients were randomly allocated to either CMF (cyclophosphamide, methotrexate, and fluorouracil; n = 500) or CEF (cyclophosphamide, epirubicin, and fluorouracil; n = 480) times 9, between January 1990 and November 1999. Tumor tissue was retrospectively identified from 805 patients and was analyzed for HER2-positivity and for TOP2A-amplifications and deletions.
RESULTS
HER2-positivity was found in 33% of the 805 investigated tumors and was not a predictive marker for epirubicin sensitivity. TOP2A changes were identified in 23% of the 773 investigated tumors: 12% had TOP2A amplifications and 11% had TOP2A deletions. We found that patients with TOP2A amplification had an increased recurrence-free (RFS; hazard ratio [HR], 0.43; 95% CI, 0.24 to 0.78) and overall survival (OS; HR, 0.57; 95% CI, 0.29 to 1.13), respectively if treated with CEF compared with CMF, and that patients with TOP2A deletions had an almost identical hazard ratio (RFS: HR, 0.63; 95% CI, 0.36 to 1.11; OS: HR, 0.56; 95% CI, 0.30 to 1.04). This is in contrast to patients with a normal TOP2A genotype for whom similar outcome was observed in both treatment arms (RFS: HR, 0.90; 95% CI, 0.70 to 1.17; OS: HR, 0.88; 95% CI, 0.66 to 1.17).
CONCLUSIONS
TOP2A amplification-and possibly deletion-seems to be predictive markers for the effect of adjuvant epirubicin containing therapy in primary breast cancer, but a final conclusion has to await a confirmative study or a meta-analysis.
Publication
Journal: Journal of Clinical Oncology
June/16/2011
Abstract
OBJECTIVE
Validated biomarkers predictive of response/resistance to anthracyclines in breast cancer are currently lacking. The neoadjuvant Trial of Principle (TOP) study, in which patients with estrogen receptor (ER) -negative tumors were treated with anthracycline (epirubicin) monotherapy, was specifically designed to evaluate the predictive value of topoisomerase II-α (TOP2A) and develop a gene expression signature to identify those patients who do not benefit from anthracyclines.
METHODS
The TOP trial included 149 patients, 139 of whom were evaluable for response prediction analyses. The primary end point was pathologic complete response (pCR). TOP2A and gene expression profiles were evaluated using pre-epirubicin biopsies. Gene expression data from ER-negative samples of the EORTC (European Organisation for Research and Treatment of Cancer) 10994/BIG (Breast International Group) 00-01 and MDACC (MD Anderson Cancer Center) 2003-0321 neoadjuvant trials were used for validation purposes.
RESULTS
A pCR was obtained in 14% of the evaluable patients in the TOP trial. TOP2A amplification, but not protein overexpression, was significantly associated with pCR (P ≤ .001 v P ≤ .33). We developed an anthracycline-based score (A-Score) combining three signatures: a TOP2A gene signature and two previously published signatures related to tumor invasion and immune response. The A-Score was characterized by a high negative predictive value ([NPV]; NPV, 0.98; 95% CI, 0.90 to 1.00) overall and in the human epidermal growth factor receptor 2 (HER2) -negative and HER2-positive subpopulations. Its performance was independently confirmed in the anthracycline-based arms of the two validation trials (BIG 00-01: NPV, 0.83; 95% CI, 0.64 to 0.94 and MDACC 2003-0321: NPV, 1.00; 95% CI, 0.80 to 1.00).
CONCLUSIONS
Given its high NPV, the A-Score could become, if further validated, a useful clinical tool to identify those patients who do not benefit from anthracyclines and could therefore be spared the non-negligible adverse effects.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/8/2007
Abstract
In contrast to the deregulated hepatocellular division that is a feature of many hepatic diseases and malignancies, physiologic liver growth during embryonic development and after partial hepatectomy (PH) in adults is characterized by tightly controlled cell proliferation. We used forward genetic screening in zebrafish to test the hypothesis that a similar genetic program governs physiologic liver growth during hepatogenesis and regeneration after PH. We identified the uhrf1 gene, a cell cycle regulator and transcriptional activator of top2a expression, as required for hepatic outgrowth and embryonic survival. By developing a methodology to perform PH on adult zebrafish, we found that liver regeneration inuhrf1+/- adult animals is impaired.uhrf1 transcript levels dramatically increase after PH in both mice, and zebrafish and top2a is not up-regulated in uhrf1+/- livers after PH. This indicates that uhrf1 is required for physiologic liver growth in both embryos and adults and illustrates that zebrafish livers regenerate.
Publication
Journal: BMC Cancer
June/20/2011
Abstract
BACKGROUND
Cervical cancer is the most common cancer among Indian women. This cancer has well defined pre-cancerous stages and evolves over 10-15 years or more. This study was undertaken to identify differentially expressed genes between normal, dysplastic and invasive cervical cancer.
METHODS
A total of 28 invasive cervical cancers, 4 CIN3/CIS, 4 CIN1/CIN2 and 5 Normal cervix samples were studied. We have used microarray technique followed by validation of the significant genes by relative quantitation using Taqman Low Density Array Real Time PCR. Immunohistochemistry was used to study the protein expression of MMP3, UBE2C and p16 in normal, dysplasia and cancers of the cervix. The effect of a dominant negative UBE2C on the growth of the SiHa cells was assessed using a MTT assay.
RESULTS
Our study, for the first time, has identified 20 genes to be up-regulated and 14 down-regulated in cervical cancers and 5 up-regulated in CIN3. In addition, 26 genes identified by other studies, as to playing a role in cervical cancer, were also confirmed in our study. UBE2C, CCNB1, CCNB2, PLOD2, NUP210, MELK, CDC20 genes were overexpressed in tumours and in CIN3/CIS relative to both Normal and CIN1/CIN2, suggesting that they could have a role to play in the early phase of tumorigenesis. IL8, INDO, ISG15, ISG20, AGRN, DTXL, MMP1, MMP3, CCL18, TOP2A AND STAT1 were found to be upregulated in tumours. Using Immunohistochemistry, we showed over-expression of MMP3, UBE2C and p16 in cancers compared to normal cervical epithelium and varying grades of dysplasia. A dominant negative UBE2C was found to produce growth inhibition in SiHa cells, which over-expresses UBE2C 4 fold more than HEK293 cells.
CONCLUSIONS
Several novel genes were found to be differentially expressed in cervical cancer. MMP3, UBE2C and p16 protein overexpression in cervical cancers was confirmed by immunohistochemistry. These will need to be validated further in a larger series of samples. UBE2C could be evaluated further to assess its potential as a therapeutic target in cervical cancer.
Publication
Journal: Journal of Clinical Oncology
June/11/2006
Abstract
OBJECTIVE
Amplification of the HER-2/neu and topoisomerase IIalpha (TOP2A) genes has been linked to the effects of anthracyclines. Their role in predicting the outcome of anthracycline-based adjuvant chemotherapy for breast cancer patients has remained controversial.
METHODS
The present substudy of the Scandinavian Breast Group trial 9401, in which an epirubicin-based regimen (nine courses of tailored and dose-escalated fluorouracil, epirubicin, and cyclophosphamide [FEC]) was compared with three or four courses of standard FEC followed by bone marrow-supported high-dose chemotherapy (cyclophosphamide, thiotepa, and carboplatin), included high-risk breast cancer patients (with eight or more positive axillary lymph nodes or at least five nodes with additional poor prognostic indicators). Amplification of HER-2/neu was determined retrospectively in paraffin-embedded tumor tissue sections by chromogenic in situ hybridization. TOP2A was tested only in HER-2/neu-amplified tumors.
RESULTS
HER-2/neu amplification alone, which was present in 32.7% of the tumors, was a strong prognostic factor for short relapse-free (P = .0034) and overall survival (P = .0008) but showed no direct association with treatment assignment. TOP2A coamplification, which was present in 37% of HER-2/neu-amplified tumors, was associated with better relapse-free survival in patients treated with tailored and dose-escalated FEC (hazard ratio [HR] = 0.45; P = .049). A statistical multivariate Cox's regression analysis confirmed the predictive significance of TOP2A coamplification (HR = 0.30; P = .020) in HER-2/neu-amplified tumors. There was no such association in patients with HER-2/neu-amplified tumors without TOP2A gene amplification.
CONCLUSIONS
Coamplification of HER-2/neu and TOP2A may define a subgroup of high-risk breast cancer patients who benefit from individually tailored and dose-escalated adjuvant anthracyclines.
Publication
Journal: Journal of Clinical Oncology
May/5/2011
Abstract
OBJECTIVE
Approximately 35% of HER2-amplified breast cancers have coamplification of the topoisomerase II-alpha (TOP2A) gene encoding an enzyme that is a major target of anthracyclines. This study was designed to evaluate whether TOP2A gene alterations may predict incremental responsiveness to anthracyclines in some breast cancers.
METHODS
A total of 4,943 breast cancers were analyzed for alterations in TOP2A and HER2. Primary tumor tissues from patients with metastatic breast cancer treated in a trial of chemotherapy plus/minus trastuzumab were studied for amplification/deletion of TOP2A and HER2 as a test set followed by evaluation of malignancies from two separate, large trials for changes in these same genes as a validation set. Association between these alterations and clinical outcomes was determined.
RESULTS
Test set cases containing HER2 amplification treated with doxorubicin and cyclophosphamide (AC) plus trastuzumab, demonstrated longer progression-free survival compared to those treated with AC alone (P = .0002). However, patients treated with AC alone whose tumors contain HER2/TOP2A coamplification experienced a similar improvement in survival (P = .004). Conversely, for patients treated with paclitaxel, HER2/TOP2A coamplification was not associated with improved outcomes. These observations were confirmed in a larger validation set, where HER2/TOP2A coamplification was again associated with longer survival when only anthracycline-containing chemotherapy was used for treatment compared with outcome in HER2-positive cancers lacking TOP2A coamplification.
CONCLUSIONS
In a study involving nearly 5,000 breast malignancies, both test set and validation set demonstrate that TOP2A coamplification, not HER2 amplification, is the clinically useful predictive marker of an incremental response to anthracycline-based chemotherapy. Absence of HER2/TOP2A coamplification may indicate a more restricted efficacy advantage for breast cancers than previously thought.
Publication
Journal: Breast Cancer Research
November/14/2010
Abstract
BACKGROUND
HER2 gene amplification and protein overexpression (HER2+) define a clinically challenging subgroup of breast cancer with variable prognosis and response to therapy. Although gene expression profiling has identified an ERBB2 molecular subtype of breast cancer, it is clear that HER2+ tumors reside in all molecular subtypes and represent a genomically and biologically heterogeneous group, needed to be further characterized in large sample sets.
METHODS
Genome-wide DNA copy number profiling, using bacterial artificial chromosome (BAC) array comparative genomic hybridization (aCGH), and global gene expression profiling were performed on 200 and 87 HER2+ tumors, respectively. Genomic Identification of Significant Targets in Cancer (GISTIC) was used to identify significant copy number alterations (CNAs) in HER2+ tumors, which were related to a set of 554 non-HER2 amplified (HER2-) breast tumors. High-resolution oligonucleotide aCGH was used to delineate the 17q12-q21 region in high detail.
RESULTS
The HER2-amplicon was narrowed to an 85.92 kbp region including the TCAP, PNMT, PERLD1, HER2, C17orf37 and GRB7 genes, and higher HER2 copy numbers indicated worse prognosis. In 31% of HER2+ tumors the amplicon extended to TOP2A, defining a subgroup of HER2+ breast cancer associated with estrogen receptor-positive status and with a trend of better survival than HER2+ breast cancers with deleted (18%) or neutral TOP2A (51%). HER2+ tumors were clearly distinguished from HER2- tumors by the presence of recurrent high-level amplifications and firestorm patterns on chromosome 17q. While there was no significant difference between HER2+ and HER2- tumors regarding the incidence of other recurrent high-level amplifications, differences in the co-amplification pattern were observed, as shown by the almost mutually exclusive occurrence of 8p12, 11q13 and 20q13 amplification in HER2+ tumors. GISTIC analysis identified 117 significant CNAs across all autosomes. Supervised analyses revealed: (1) significant CNAs separating HER2+ tumors stratified by clinical variables, and (2) CNAs separating HER2+ from HER2- tumors.
CONCLUSIONS
We have performed a comprehensive survey of CNAs in HER2+ breast tumors, pinpointing significant genomic alterations including both known and potentially novel therapeutic targets. Our analysis sheds further light on the genomically complex and heterogeneous nature of HER2+ tumors in relation to other subgroups of breast cancer.
Publication
Journal: Virology
March/31/2005
Abstract
With the goal of identifying genes with a differential pattern of expression between invasive cervical carcinomas (CVX) and normal cervical keratinocytes (NCK), we used oligonucleotide microarrays to interrogate the expression of 14,500 known genes in 11 primary HPV16 and HPV18-infected stage IB-IIA cervical cancers and four primary normal cervical keratinocyte cultures. Hierarchical cluster analysis of gene expression data identified 240 and 265 genes that exhibited greater than twofold up-regulation and down-regulation, respectively, in primary CVX when compared to NCK. Cyclin-dependent kinase inhibitor 2A (CDKN2A/p16), mesoderm-specific transcript, forkhead box M1, v-myb myeloblastosis viral oncogene homolog (avian)-like2 (v-Myb), minichromosome maintenance proteins 2, 4, and 5, cyclin B1, prostaglandin E synthase (PTGES), topoisomerase II alpha (TOP2A), ubiquitin-conjugating enzyme E2C, CD97 antigen, E2F transcription factor 1, and dUTP pyrophosphatase were among the most highly overexpressed genes in CVX when compared to NCK. Down-regulated genes in CVX included transforming growth factor beta 1, transforming growth factor alpha, CFLAR, serine proteinase inhibitors (SERPING1 and SERPINF1), cadherin 13, protease inhibitor 3, keratin 16, and tissue factor pathway inhibitor-2 (TFPI-2). Differential expression of some of these genes including CDKN2A/p16, v-Myb, PTGES, and TOP2A was validated by quantitative real-time PCR. Flow cytometry on primary CVX and NCK and immunohistochemical staining of formalin fixed paraffin-embedded tumor specimens from which primary CVX cultures were derived as well as from a separate set of invasive cervical cancers confirmed differential expression of the CDKN2A/p16 and PTGES markers on CVX versus NCK. These results identify several genes that are coordinately disregulated in cervical cancer, likely representing common signaling pathways triggered by HPV transformation. Moreover, these data obtained with highly purified primary tumor cultures highlight novel molecular features of human cervical cancer and provide a foundation for the development of new type-specific diagnostic and therapeutic strategies for this disease.
Publication
Journal: Oncogene
September/9/2002
Abstract
No clear patterns in molecular changes underlying the malignant processes in lung cancer of different histological types have been found so far. To identify critical genes in lung cancer progression we compared the expression profile of cancer related genes in 14 pulmonary adenocarcinoma patients with normal lung tissue by using the cDNA array technique. Principal component analyses (PCA) and permutation test were used to detect the differentially expressed genes. The expression profiles of 10 genes were confirmed by semi-quantitative real-time RT-PCR. In tumour samples, as compared to normal lung tissue, the up-regulated genes included such known tumour markers as CCNB1, PLK, tenascin, KRT8, KRT19 and TOP2A. The down-regulated genes included caveolin 1 and 2, and TIMP3. We also describe, for the first time, down-regulation of the interesting SOCS2 and 3, DOC2 and gravin. We show that silencing of SOCS2 is not caused by methylation of exon 1 of the gene. In conclusion, by using the cDNA array technique we were able to reveal marked differences in the gene expression level between normal lung and tumour tissue and find possible new tumour markers for pulmonary adenocarcinoma.
Publication
Journal: International Journal of Cancer
April/17/2006
Abstract
The aim of this study is to discover a gene set that can predict resistance to platinum-based chemotherapy in ovarian cancer. The study was performed on 96 primary ovarian adenocarcinoma specimens from 2 hospitals all treated with platinum-based chemotherapy. In our search for genes, 24 specimens of the discovery set (5 nonresponders and 19 responders) were profiled in duplicate with 18K cDNA microarrays. Confirmation was done using quantitative RT-PCR on 72 independent specimens (9 nonresponders and 63 responders). Sixty-nine genes were differentially expressed between the nonresponders (n=5) and the responders (n=19) in the discovery phase. An algorithm was constructed to identify predictive genes in this discovery set. This resulted in 9 genes (FN1, TOP2A, LBR, ASS, COL3A1, STK6, SGPP1, ITGAE, PCNA), which were confirmed with qRT-PCR. This gene set predicted platinum resistance in an independent validation set of 72 tumours with a sensitivity of 89% (95% CI: 0.68-1.09) and a specificity of 59% (95% CI: 0.47-0.71)(OR=0.09, p=0.026). Multivariable analysis including patient and tumour characteristics demonstrated that this set of 9 genes is independent for the prediction of resistance (p<0.01). The findings of this study are the discovery of a gene signature that classifies the tumours, according to their response, and a 9-gene set that determines resistance in an independent validation set that outperforms patient and tumour characteristics. A larger independent multicentre study should further confirm whether this 9-gene set can identify the patients who will not respond to platinum-based chemotherapy and could benefit from other therapies.
Publication
Journal: Circulation Research
January/22/2015
Abstract
BACKGROUND
Congenital heart disease (CHD) is among the most common birth defects. Most cases are of unknown pathogenesis.
OBJECTIVE
To determine the contribution of de novo copy number variants (CNVs) in the pathogenesis of sporadic CHD.
RESULTS
We studied 538 CHD trios using genome-wide dense single nucleotide polymorphism arrays and whole exome sequencing. Results were experimentally validated using digital droplet polymerase chain reaction. We compared validated CNVs in CHD cases with CNVs in 1301 healthy control trios. The 2 complementary high-resolution technologies identified 63 validated de novo CNVs in 51 CHD cases. A significant increase in CNV burden was observed when comparing CHD trios with healthy trios, using either single nucleotide polymorphism array (P=7×10(-5); odds ratio, 4.6) or whole exome sequencing data (P=6×10(-4); odds ratio, 3.5) and remained after removing 16% of de novo CNV loci previously reported as pathogenic (P=0.02; odds ratio, 2.7). We observed recurrent de novo CNVs on 15q11.2 encompassing CYFIP1, NIPA1, and NIPA2 and single de novo CNVs encompassing DUSP1, JUN, JUP, MED15, MED9, PTPRE SREBF1, TOP2A, and ZEB2, genes that interact with established CHD proteins NKX2-5 and GATA4. Integrating de novo variants in whole exome sequencing and CNV data suggests that ETS1 is the pathogenic gene altered by 11q24.2-q25 deletions in Jacobsen syndrome and that CTBP2 is the pathogenic gene in 10q subtelomeric deletions.
CONCLUSIONS
We demonstrate a significantly increased frequency of rare de novo CNVs in CHD patients compared with healthy controls and suggest several novel genetic loci for CHD.
Publication
Journal: Cancer Research
May/30/2002
Abstract
DNA copy number gains and amplifications at 17q are frequent in gastriccancer, yet systematic analyses of the 17q amplicon have not been performed. In this study, we carried out a comprehensive analysis of copy number and expression levels of 636 chromosome 17-specific genes in gastric cancer by using a custom-made chromosome 17-specific cDNA microarray. Analysis of DNA copy number changes by comparative genomic hybridization on cDNA microarray revealed increased copy numbers of 11 known genes (ERBB2, TOP2A, GRB7, ACLY, PIP5K2B, MPRL45, MKP-L, LHX1, MLN51, MLN64, and RPL27) and seven expressed sequence tags (ESTs) that mapped to 17q12-q21 region. To investigate the genes transcribed at the 17q, we performed gene expression analyses on an identical cDNA microarray. Our expression analysis showed overexpression of 8 genes (ERBB2, TOP2A, GRB2, AOC3, AP2B1, KRT14, JUP, and ITGA3) and two ESTs. Of the commonly amplified transcripts, an uncharacterized EST AA552509 and the TOP2A gene were most frequently overexpressed in 82% of the samples. Additional studies will be initiated to understand the possible biological and clinical significance of these genes in gastric cancer development and progression.
Publication
Journal: Breast Cancer Research and Treatment
November/16/2009
Abstract
BACKGROUND
Metaplastic breast carcinomas (MBCs) comprise a group of aggressive and chemotherapy resistant cancers characterised by neoplastic cells displaying differentiation towards squamous epithelium or mesenchymal elements. Previous histopathological and immunohistochemical analysis of MBCs suggested that these cancers would have a basal-like profile.
METHODS
We investigated the molecular subtype of 20 MBCs using microarray-based expression profiling data. These data were compared with those of 79 invasive ductal carcinomas (IDCs) of basal-like phenotype by unsupervised hierarchical clustering, supervised analysis and pathway analysis.
RESULTS
We demonstrate that 95% of all MBCs are of basal-like molecular subtype. Furthermore, unsupervised hierarchical clustering analysis and pathway analysis of the profiles of MBCs revealed that MBCs are part of the spectrum of basal-like breast cancers. Significance analysis of microarrays (SAM) identified 1,385 transcripts differentially expressed between MBCs and IDCs of basal-like phenotype. Pathway analysis using these genes revealed that DNA repair pathways, including BRCA1 pathway, PTEN, a gene whose loss of function is associated with resistance to chemotherapy, and TOP2A, the molecular target of anthracyclines, are significantly downregulated in MBCs compared to basal-like IDCs. These findings may at least in part explain the reported poor responses to chemotherapy of MBCs. Furthermore, MBCs showed significantly higher expression of genes related to myoepithelial differentiation and epithelial to mesenchymal transition (EMT).
CONCLUSIONS
Our results demonstrate that MBCs are part of the spectrum of basal-like breast carcinomas and display a myoepithelial and EMT-like molecular make-up. The reported poorer response to chemotherapeutic agents in patients with MBCs may stem from downregulated DNA damage response pathways, PTEN and TOP2A.
load more...