Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(697)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Cell Stem Cell
September/2/2010
Abstract
Transcription factors, such as Oct4, are critical for establishing and maintaining pluripotent cell identity. Whereas the genomic locations of several pluripotency transcription factors have been reported, the spectrum of their interaction partners is underexplored. Here, we use an improved affinity protocol to purify Oct4-interacting proteins from mouse embryonic stem cells (ESCs). Subsequent purification of Oct4 partners Sall4, Tcfcp2l1, Dax1, and Esrrb resulted in an Oct4 interactome of 166 proteins, including transcription factors and chromatin-modifying complexes with documented roles in self-renewal, but also many factors not previously associated with the ESC network. We find that Esrrb associated with the basal transcription machinery and also detect interactions between transcription factors and components of the TGF-beta, Notch, and Wnt signaling pathways. Acute depletion of Oct4 reduced binding of Tcfcp2l1, Dax1, and Esrrb to several target genes. In conclusion, our purification protocol allowed us to bring greater definition to the circuitry controlling pluripotent cell identity.
Publication
Journal: Nature Cell Biology
November/8/2006
Abstract
Embryonic stem (ES) cells are pluripotent cells that can self-renew or differentiate into many cell types. A unique network of transcription factors and signalling molecules are essential for maintaining this capability. Here, we report that a spalt family member, Sall4, is required for the pluripotency of ES cells. Similarly to Oct4, a reduction in Sall4 levels in mouse ES cells results in respecification, under the appropriate culture conditions, of ES cells to the trophoblast lineage. Sall4 regulates transcription of Pou5f1 which encodes Oct4. Sall4 binds to the highly conserved regulatory region of the Pou5f1 distal enhancer and activates Pou5f1 expression in vivo and in vitro. Microinjection of Sall4 small interfering (si) RNA into mouse zygotes resulted in reduction of Sall4 and Oct4 mRNAs in preimplantation embryos and significant expansion of Cdx2 expression into the inner cell mass. These results demonstrate that Sall4 is a transcriptional activator of Pou5f1 and has a critical role in the maintenance of ES cell pluripotency by modulating Oct4 expression. The data also indicates that Sall4 is important for early embryonic cell-fate decisions.
Publication
Journal: Nature
September/1/2009
Abstract
Diverse histone modifications are catalysed and recognized by various specific proteins, establishing unique modification patterns that act as transcription signals. In particular, histone H3 trimethylation at lysine 36 (H3K36me3) is associated with actively transcribed regions and has been proposed to provide landmarks for continuing transcription; however, the control mechanisms and functions of H3K36me3 in higher eukaryotes are unknown. Here we show that the H3K36me3-specific histone methyltransferase (HMTase) Wolf-Hirschhorn syndrome candidate 1 (WHSC1, also known as NSD2 or MMSET) functions in transcriptional regulation together with developmental transcription factors whose defects overlap with the human disease Wolf-Hirschhorn syndrome (WHS). We found that mouse Whsc1, one of five putative Set2 homologues, governed H3K36me3 along euchromatin by associating with the cell-type-specific transcription factors Sall1, Sall4 and Nanog in embryonic stem cells, and Nkx2-5 in embryonic hearts, regulating the expression of their target genes. Whsc1-deficient mice showed growth retardation and various WHS-like midline defects, including congenital cardiovascular anomalies. The effects of Whsc1 haploinsufficiency were increased in Nkx2-5 heterozygous mutant hearts, indicating their functional link. We propose that WHSC1 functions together with developmental transcription factors to prevent the inappropriate transcription that can lead to various pathophysiologies.
Publication
Journal: Nature
September/23/2012
Abstract
Induced pluripotent stem cells (iPSCs) can be derived from somatic cells by ectopic expression of different transcription factors, classically Oct4 (also known as Pou5f1), Sox2, Klf4 and Myc (abbreviated as OSKM). This process is accompanied by genome-wide epigenetic changes, but how these chromatin modifications are biochemically determined requires further investigation. Here we show in mice and humans that the histone H3 methylated Lys 27 (H3K27) demethylase Utx (also known as Kdm6a) regulates the efficient induction, rather than maintenance, of pluripotency. Murine embryonic stem cells lacking Utx can execute lineage commitment and contribute to adult chimaeric animals; however, somatic cells lacking Utx fail to robustly reprogram back to the ground state of pluripotency. Utx directly partners with OSK reprogramming factors and uses its histone demethylase catalytic activity to facilitate iPSC formation. Genomic analysis indicates that Utx depletion results in aberrant dynamics of H3K27me3 repressive chromatin demethylation in somatic cells undergoing reprogramming. The latter directly hampers the derepression of potent pluripotency promoting gene modules (including Sall1, Sall4 and Utf1), which can cooperatively substitute for exogenous OSK supplementation in iPSC formation. Remarkably, Utx safeguards the timely execution of H3K27me3 demethylation observed in embryonic day 10.5-11 primordial germ cells (PGCs), and Utx-deficient PGCs show cell-autonomous aberrant epigenetic reprogramming dynamics during their embryonic maturation in vivo. Subsequently, this disrupts PGC development by embryonic day 12.5, and leads to diminished germline transmission in mouse chimaeras generated from Utx-knockout pluripotent cells. Thus, we identify Utx as a novel mediator with distinct functions during the re-establishment of pluripotency and germ cell development. Furthermore, our findings highlight the principle that molecular regulators mediating loss of repressive chromatin during in vivo germ cell reprogramming can be co-opted during in vitro reprogramming towards ground state pluripotency.
Publication
Journal: Stem Cells
August/5/2009
Abstract
The SWI/SNF-Brg1 chromatin remodeling protein plays critical roles in cell-cycle control and differentiation through regulation of gene expression. Loss of Brg1 in mice results in early embryonic lethality, and recent studies have implicated a role for Brg1 in somatic stem cell self-renewal and differentiation. However, little is known about Brg1 function in preimplantation embryos and embryonic stem (ES) cells. Here we report that Brg1 is required for ES cell self-renewal and pluripotency. RNA interference-mediated knockdown of Brg1 in blastocysts caused aberrant expression of Oct4 and Nanog. In ES cells, knockdown of Brg1 resulted in phenotypic changes indicative of differentiation, downregulation of self-renewal and pluripotency genes (e.g., Oct4, Sox2, Sall4, Rest), and upregulation of differentiation genes. Using genome-wide promoter analysis (chromatin immunoprecipitation) we found that Brg1 occupied the promoters of key pluripotency-related genes, including Oct4, Sox2, Nanog, Sall4, Rest, and Polycomb group (PcG) proteins. Moreover, Brg1 co-occupied a subset of Oct4, Sox2, Nanog, and PcG protein target genes. These results demonstrate an important role for Brg1 in regulating self-renewal and pluripotency in ES cells.
Publication
Journal: Journal of Biological Chemistry
November/5/2006
Abstract
Embryonic stem (ES) cells are pluripotent cells with self-renewing property. Nanog is a homeobox transcription factor required to maintain ES cells in a non-differentiated state. Using affinity purification coupled to liquid chromatography-tandem mass spectrometry analysis, we identified Sall4 as a Nanog co-purified protein. Co-immunoprecipitation and glutathione S-transferase pulldown experiments confirmed the interaction between Nanog and Sall4. We showed that Nanog and Sall4 co-occupied Nanog and Sall4 enhancer regions in living ES cells. Knockdown of Nanog or Sall4 by RNA interference led to a reduction in Nanog and Sall4 enhancer activities, providing evidence that these factors are positively regulating these enhancers. Importantly, co-transfection of Sall4 with these ES cell-specific enhancers led to transactivation in heterologous somatic cells. Chromatin immunoprecipitation experiments also showed that Sall4 co-occupied many Nanog binding sites in ES cells. Our data implicate Sall4 as an important component of the transcription regulatory networks in ES cells by cooperating with Nanog. We suggest that Sall4 and Nanog form a regulatory circuit similar to that of Oct4 and Sox2. This study highlights the extensive regulatory loops connecting genes, which encode for key transcription factors in ES cells.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/12/2007
Abstract
We analyze new and existing expression and transcription factor-binding data to characterize gene regulatory relations in mouse ES cells (ESC). In addition to confirming the key roles of Oct4, Sox2, and Nanog, our analysis identifies several genes, such as Esrrb, Stat3, Tcf7, Sall4, and LRH-1, as statistically significant coregulators. The regulatory interactions among 15 core regulators are used to construct a gene regulatory network in ESC. The network encapsulates extensive cross-regulations among the core regulators, highlights how they may control epigenetic processes, and reveals the surprising roles of nuclear receptors. Our analysis also provides information on the regulation of a large number of putative target genes of the network.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
February/4/2009
Abstract
Hemophilia A is caused by mutations within the Factor VIII (FVIII) gene that lead to depleted protein production and inefficient blood clotting. Several attempts at gene therapy have failed for various reasons-including immune rejection. The recent generation of induced pluripotent stem (iPS) cells from somatic cells by the ectopic expression of 3 transcription factors, Oct4, Sox2, and Klf4, provides a means of circumventing the immune rejection barrier. To date, iPS cells appear to be indistinguishable from ES cells and thus provide tremendous therapeutic potential. Here we prepared murine iPS cells from tail-tip fibroblasts and differentiated them to both endothelial cells and endothelial progenitor cells by using the embryoid body differentiation method. These iPS cells express major ES cell markers such as Oct4, Nanog, SSEA-1, alkaline phosphatase, and SALL4. Endothelial/endothelial progenitor cells derived from iPS cells expressed cell-specific markers such as CD31, CD34, and Flk1 and secreted FVIII protein. These iPS-derived cells were injected directly into the liver of irradiated hemophilia A mice. At various times after transplantation (7-90 days) hemophilia A mice and their control mice counterparts were challenged by a tail-clip bleeding assay. Nontransplanted hemophilia A mice died within a few hours, whereas transplanted mice survived for more than 3 months. Plasma FVIII levels increased in transplanted hemophilia A mice during this period to 8% to 12% of wild type and corrected the hemophilia A phenotype. Our studies provide additional evidence that iPS cell therapy may be able to treat human monogenetic disorders in the future.
Publication
Journal: Cell Stem Cell
January/11/2009
Abstract
Stem cells self-renew or differentiate under the governance of a stem-cell-specific transcriptional program, with each transcription factor orchestrating the activities of a particular set of genes. Here we demonstrate that a single transcription factor is able to regulate distinct core circuitries in two different blastocyst-derived stem cell lines, embryonic stem cells (ESCs) and extraembryonic endoderm (XEN) cells. The transcription factor Sall4 is required for early embryonic development and for ESC pluripotency. Sall4 is also expressed in XEN cells, and depletion of Sall4 disrupts self-renewal and induces differentiation. Genome-wide analysis reveals that Sall4 is regulating different gene sets in ESCs and XEN cells, and depletion of Sall4 targets in the respective cell types induces differentiation. With Oct4, Sox2, and Nanog, Sall4 forms a crucial interconnected autoregulatory network in ESCs. In XEN cells, Sall4 regulates the key XEN lineage-associated genes Gata4, Gata6, Sox7, and Sox17. Our findings demonstrate how Sall4 functions as an essential stemness factor for two different stem cell lines.
Publication
Journal: American Journal of Human Genetics
March/30/2003
Abstract
Duane syndrome is a congenital eye movement disorder characterized most typically by absence of abduction, restricted adduction, and retraction of the globe on attempted adduction. Duane syndrome can be coinherited with radial ray anomalies as an autosomal dominant trait, referred to as "Okihiro syndrome" or "Duane radial ray syndrome" (DRRS). We ascertained three pedigrees with DRRS and mapped their disease gene to a 21.6-cM region of chromosome 20 flanked by markers D20S888 and D20S102. A new member of the SAL family of proposed C(2)H(2) zinc finger transcription factors, SALL4, falls within the region. Mutation analysis of SALL4 in the three pedigrees revealed one nonsense and two frameshift heterozygous mutations. SALL4 represents the first identified Duane syndrome gene and the second malformation syndrome resulting from mutations in SAL genes and likely plays a critical role in abducens motoneuron development.
Publication
Journal: Development (Cambridge)
October/15/2006
Abstract
Mutations in SALL4, the human homolog of the Drosophila homeotic gene spalt (sal), cause the autosomal dominant disorder known as Okihiro syndrome. In this study, we show that a targeted null mutation in the mouse Sall4 gene leads to lethality during peri-implantation. Growth of the inner cell mass from the knockout blastocysts was reduced, and Sall4-null embryonic stem (ES) cells proliferated poorly with no aberrant differentiation. Furthermore, we demonstrated that anorectal and heart anomalies in Okihiro syndrome are caused by Sall4 haploinsufficiency and that Sall4/Sall1 heterozygotes exhibited an increased incidence of anorectal and heart anomalies, exencephaly and kidney agenesis. Sall4 and Sall1 formed heterodimers, and a truncated Sall1 caused mislocalization of Sall4 in the heterochromatin; thus, some symptoms of Townes-Brocks syndrome caused by SALL1 truncations could result from SALL4 inhibition.
Publication
Journal: Blood
November/1/2006
Abstract
SALL4, a human homolog to Drosophila spalt, is a novel zinc finger transcriptional factor essential for development. We cloned SALL4 and its isoforms (SALL4A and SALL4B). Through immunohistochemistry and real-time reverse-transcription-polymerase chain reaction (RT-PCR), we demonstrated that SALL4 was constitutively expressed in human primary acute myeloid leukemia (AML, n = 81), and directly tested the leukemogenic potential of constitutive expression of SALL4 in a murine model. SALL4B transgenic mice developed myelodysplastic syndrome (MDS)-like features and subsequently AML that was transplantable. Increased apoptosis associated with dysmyelopoiesis was evident in transgenic mouse marrow and colony-formation (CFU) assays. Both isoforms could bind to beta-catenin and synergistically enhanced the Wnt/beta-catenin signaling pathway. Our data suggest that the constitutive expression of SALL4 causes MDS/AML, most likely through the Wnt/beta-catenin pathway. Our murine model provides a useful platform to study human MDS/AML transformation, as well as the Wnt/beta-catenin pathway's role in the pathogenesis of leukemia stem cells.
Publication
Journal: Human Molecular Genetics
April/15/2003
Abstract
Okihiro syndrome refers to the association of forearm malformations with Duane syndrome of eye retraction. Based on the reported literature experience, clinical diagnosis of the syndrome can be elusive, owing to the variable presentation in families reported. Specifically, there is overlap of clinical features with other conditions, most notably Holt-Oram syndrome, a condition resulting from mutation of the TBX5 locus and Townes-Brocks syndrome, known to be caused by mutations in the SALL1 gene. Arising from our observation of several malformations in Okihiro syndrome patients which are also described in Townes-Brocks syndrome, we postulated that Okihiro syndrome might result from mutation of another member of the human SALL gene family. We have characterized the human SALL4 gene on chromosome 20q13.13-q13.2. Moreover, we have identified literature reports of forelimb malformations in patients with cytogenetically identifiable abnormalities of this region. We here present evidence in 5 of 8 affected families that mutation at this locus results in the Okihiro syndrome phenotype.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/11/2009
Abstract
Embryonic stem cells have potential utility in regenerative medicine because of their pluripotent characteristics. Sall4, a zinc-finger transcription factor, is expressed very early in embryonic development with Oct4 and Nanog, two well-characterized pluripotency regulators. Sall4 plays an important role in governing the fate of stem cells through transcriptional regulation of both Oct4 and Nanog. By using chromatin immunoprecipitation coupled to microarray hybridization (ChIP-on-chip), we have mapped global gene targets of Sall4 to further investigate regulatory processes in W4 mouse ES cells. A total of 3,223 genes were identified that were bound by the Sall4 protein on duplicate assays with high confidence, and many of these have major functions in developmental and regulatory pathways. Sall4 bound approximately twice as many annotated genes within promoter regions as Nanog and approximately four times as many as Oct4. Immunoprecipitation revealed a heteromeric protein complex(es) between Sall4, Oct4, and Nanog, consistent with binding site co-occupancies. Decreasing Sall4 expression in W4 ES cells decreases the expression levels of Oct4, Sox2, c-Myc, and Klf4, four proteins capable of reprogramming somatic cells to an induced pluripotent state. Further, Sall4 bound many genes that are regulated in part by chromatin-based epigenetic events mediated by polycomb-repressive complexes and bivalent domains. This suggests that Sall4 plays a diverse role in regulating stem cell pluripotency during early embryonic development through integration of transcriptional and epigenetic controls.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
December/21/2006
Abstract
Sall4 is a mammalian Spalt transcription factor expressed by cells of the early embryo and germ cells, an expression pattern similar to that of both Oct4 and Sox2, which play essential roles during early murine development. We show that the activity of Sall4 is cell-autonomously required for the development of the epiblast and primitive endoderm from the inner cell mass. Furthermore, no embryonic or extraembryonic endoderm stem cell lines could be established from Sall4-deficient blastocysts. In contrast, neither the development of the trophoblast lineage nor the ability to generate trophoblast cell lines from murine blastocysts was impaired in the absence of Sall4. These data establish Sall4 as an essential transcription factor required for the early development of inner cell mass-derived cell lineages.
Publication
Journal: American Journal of Pathology
December/12/2010
Abstract
Amplification of the Notch3 locus has been detected in ovarian high-grade serous carcinoma (HGSC), the most common and malignant type of ovarian cancer. We have previously demonstrated that ovarian cancer cells, which amplified and overexpressed Notch3, were dependent on Notch3 signaling for cellular survival and growth. In this study, we provide new evidence that Notch3 expression is associated with recurrent postchemotherapy HGSCs. Moreover, patients with recurrent HGSCs in effusion with high Notch3 expression had a significantly worse clinical outcome, including reduced overall survival and shortened progression-free survival than did patients with low Notch3 expressing HGSC. Ectopic expression of the Notch3 intracellular domain led to an increase in IC(50) for carboplatin in an ovarian surface epithelial cell line and in a low-grade serous carcinoma cell line that expressed undetectable levels of Notch3. Interestingly, expression of the Notch3 intracellular domain increased expression of several genes associated with embryonic stem cells including Nanog, Oct4, Klf4, Rex1, Rif1, Sall4, and NAC1 as well as an ATP-dependent transporter gene, ABCB1. Knockdown of Notch3 resulted in sensitization to carboplatin in OVCAR3 that expresses abundant Notch3. Taken together, the above findings suggest that Notch3 pathway activation reprograms tumor cells to assume an array of embryonic stem cell markers and participates in development of chemoresistance in HGSC.
Publication
Journal: Hepatology
July/4/2013
Abstract
Liver cancers, including hepatocellular carcinomas (HCCs), cholangiocarcinomas (CCs), and fibrolamellar HCCs (FL-HCCs) are among the most common cancers worldwide and are associated with a poor prognosis. Investigations of genes important in liver cancers have focused on Sal-like protein 4 (SALL4), a member of a family of zinc finger transcription factors. It is a regulator of embryogenesis, organogenesis, pluripotency, can elicit reprogramming of somatic cells, and is a marker of stem cells. We found it expressed in normal murine hepatoblasts, normal human hepatic stem cells, hepatoblasts and biliary tree stem cells, but not in mature parenchymal cells of liver or biliary tree. It was strongly expressed in surgical specimens of human HCCs, CCs, a combined hepatocellular and cholangiocarcinoma, a FL-HCC, and in derivative, transplantable tumor lines in immune-compromised hosts. Bioinformatics analyses indicated that elevated expression of SALL4 in tumors is associated with poor survival of HCC patients. Experimental manipulation of SALL4's expression results in changes in proliferation versus differentiation in human HCC cell lines in vitro and in vivo in immune-compromised hosts. Virus-mediated gene transfer of SALL4 was used for gain- and loss-of-function analyses in the cell lines. Significant growth inhibition in vitro and in vivo, accompanied by an increase in differentiation occurred with down-regulation of SALL4. Overexpression of SALL4 resulted in increased cell proliferation in vitro, correlating with an increase in expression of cytokeratin19 (CK19), epithelial cell adhesion molecules (EpCAM), and adenosine triphosphate (ATP)-binding cassette-G2 (ABCG2).
CONCLUSIONS
SALL4's expression is an indicator of stem cells, a prognostic marker in liver cancers, correlates with cell and tumor growth, with resistance to 5-FU, and its suppression results in differentiation and slowed tumor growth. SALL4 is a novel therapeutic target for liver cancers.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
August/14/2007
Abstract
Bmi-1 and SALL4 are putative oncogenes that modulate stem cell pluripotency and play a role in leukemogenesis. Murine Sall4 also has been shown to play an essential role in maintaining the properties of ES cells and governing the fate of the primitive inner cell mass. Here, we demonstrate that transcription from the Bmi-1 promoter is strikingly activated by SALL4 in a dose-dependent manner by using a luciferase reporter gene assay. Both promoter deletion construct studies and ChIP from a myeloid stem cell line, 32D, demonstrate that SALL4 binds to a specific region of the Bmi-1 promoter. Deletion of one copy of Sall4 by gene targeting in mouse bone marrow significantly reduced Bmi-1 expression. Reducing SALL4 expression by siRNA in the HL-60 leukemia cell line also results in significant down-regulation of Bmi-1. Furthermore, Bmi-1 expression is up-regulated in transgenic mice that constitutively overexpress human SALL4, and the levels of Bmi-1 in these mice increase as they progress from normal to preleukemic (myelodysplastic syndrome) and leukemic (acute myeloid leukemia) stages. High levels of H3-K4 trimethylation and H3-K79 dimethylation were observed in the SALL4 binding region of the Bmi-1 promoter. These findings suggest a novel link between SALL4 and Bmi-1 in regulating self-renewal of normal and leukemic stem cells. An increase in histone H3-K4 and H3-K79 methylation within the Bmi-1 promoter provides an epigenetic mechanism for histone modifications in SALL4-mediated Bmi-1 gene deregulation.
Publication
Journal: PLoS ONE
September/6/2010
Abstract
BACKGROUND
SALL4 is a member of the SALL gene family that encodes a group of putative developmental transcription factors. Murine Sall4 plays a critical role in maintaining embryonic stem cell (ES cell) pluripotency and self-renewal. We have shown that Sall4 activates Oct4 and is a master regulator in murine ES cells. Other SALL gene members, especially Sall1 and Sall3 are expressed in both murine and human ES cells, and deletions of these two genes in mice lead to perinatal death due to developmental defects. To date, little is known about the molecular mechanisms controlling the regulation of expressions of SALL4 or other SALL gene family members.
RESULTS
This report describes a novel SALL4/OCT4 regulator feedback loop in ES cells in balancing the proper expression dosage of SALL4 and OCT4 for the maintenance of ESC stem cell properties. While we have observed that a positive feedback relationship is present between SALL4 and OCT4, the strong self-repression of SALL4 seems to be the "break" for this loop. In addition, we have shown that SALL4 can repress the promoters of other SALL family members, such as SALL1 and SALL3, which competes with the activation of these two genes by OCT4.
CONCLUSIONS
Our findings, when taken together, indicate that SALL4 is a master regulator that controls its own expression and the expression of OCT4. SALL4 and OCT4 work antagonistically to balance the expressions of other SALL gene family members. This novel SALL4/OCT4 transcription regulation feedback loop should provide more insight into the mechanism of governing the "stemness" of ES cells.
Publication
Journal: PLoS ONE
August/5/2009
Abstract
BACKGROUND
The embryonic stem cell (ESC) factor, SALL4, plays an essential role in both development and leukemogenesis. It is a unique gene that is involved in self-renewal in ESC and leukemic stem cell (LSC).
RESULTS
To understand the mechanism(s) of SALL4 function(s), we sought to identify SALL4-associated proteins by tandem mass spectrometry. Components of a transcription repressor Mi-2/Nucleosome Remodeling and Deacetylase (NuRD) complex were found in the SALL4-immunocomplexes with histone deacetylase (HDAC) activity in ESCs with endogenous SALL4 expression and 293T cells overexpressing SALL4. The SALL4-mediated transcriptional regulation was tested on two potential target genes: PTEN and SALL1. Both genes were confirmed as SALL4 downstream targets by chromatin-immunoprecipitation, and their expression levels, when tested by quantitative reverse transcription polymerase chain reaction (qRT-PCR), were decreased in 293T cells overexpressing SALL4. Moreover, SALL4 binding sites at the promoter regions of PTEN and SALL1 were co-occupied by NuRD components, suggesting that SALL4 represses the transcriptions of PTEN and SALL1 through its interactions with the Mi-2/NuRD complex. The in vivo repressive effect(s) of SALL4 were evaluated in SALL4 transgenic mice, where decreased expressions of PTEN and SALL1 were associated with myeloid leukemia and cystic kidneys, respectively.
CONCLUSIONS
In summary, we are the first to demonstrate that stem cell protein SALL4 represses its target genes, PTEN and SALL1, through the epigenetic repressor Mi-2/NuRD complex. Our novel finding provides insight into the mechanism(s) of SALL4 functions in kidney development and leukemogenesis.
Publication
Journal: Frontiers in Surgery
May/4/2016
Abstract
Glioblastoma multiforme (GBM), an aggressive tumor that typically exhibits treatment failure with high mortality rates, is associated with the presence of cancer stem cells (CSCs) within the tumor. CSCs possess the ability for perpetual self-renewal and proliferation, producing downstream progenitor cells that drive tumor growth. Studies of many cancer types have identified CSCs using specific markers, but it is still unclear as to where in the stem cell hierarchy these markers fall. This is compounded further by the presence of multiple GBM and glioblastoma cancer stem cell subtypes, making investigation and establishment of a universal treatment difficult. This review examines the current knowledge on the CSC markers SALL4, OCT-4, SOX2, STAT3, NANOG, c-Myc, KLF4, CD133, CD44, nestin, and glial fibrillary acidic protein, specifically focusing on their use and validity in GBM research and how they may be utilized for investigations into GBM's cancer biology.
Publication
Journal: New England Journal of Medicine
June/17/2013
Abstract
BACKGROUND
Hepatocellular carcinoma is the third leading cause of cancer-related deaths worldwide. In the heterogeneous group of hepatocellular carcinomas, those with characteristics of embryonic stem-cell and progenitor-cell gene expression are associated with the worst prognosis. The oncofetal gene SALL4, a marker of a subtype of hepatocellular carcinoma with progenitor-like features, is associated with a poor prognosis and is a potential target for treatment.
METHODS
We screened specimens obtained from patients with primary hepatocellular carcinoma for the expression of SALL4 and carried out a clinicopathological analysis. Loss-of-function studies were then performed to evaluate the role of SALL4 in hepatocarcinogenesis and its potential as a molecular target for therapy. To assess the therapeutic effects of a peptide that targets SALL4, we used in vitro functional and in vivo xenograft assays.
RESULTS
SALL4 is an oncofetal protein that is expressed in the human fetal liver and silenced in the adult liver, but it is reexpressed in a subgroup of patients who have hepatocellular carcinoma and an unfavorable prognosis. Gene-expression analysis showed the enrichment of progenitor-like gene signatures with overexpression of proliferative and metastatic genes in SALL4-positive hepatocellular carcinomas. Loss-of-function studies confirmed the critical role of SALL4 in cell survival and tumorigenicity. Blocking SALL4-corepressor interactions released suppression of PTEN (the phosphatase and tensin homologue protein) and inhibited tumor formation in xenograft models in vivo.
CONCLUSIONS
SALL4 is a marker for a progenitor subclass of hepatocellular carcinoma with an aggressive phenotype. The absence of SALL4 expression in the healthy adult liver enhances the potential of SALL4 as a treatment target in hepatocellular carcinoma. (Funded by the Singapore National Medical Research Council and others.).
Publication
Journal: Molecular and Cellular Biology
November/22/2010
Abstract
Murine embryonic stem (ES) cells are defined by continuous self-renewal and pluripotency. A diverse repertoire of protein isoforms arising from alternative splicing is expressed in ES cells without defined biological roles. Sall4, a transcription factor essential for pluripotency, exists as two isoforms (Sall4a and Sall4b). Both isoforms can form homodimers and a heterodimer with each other, and each can interact with Nanog. By genomewide location analysis, we determined that Sall4a and Sall4b have overlapping, but not identical binding sites within the ES cell genome. In addition, Sall4b, but not Sall4a, binds preferentially to highly expressed loci in ES cells. Sall4a and Sall4b binding sites are distinguished by both epigenetic marks at target loci and their clustering with binding sites of other pluripotency factors. When ES cells expressing a single isoform of Sall4 are generated, Sall4b alone could maintain the pluripotent state, although it could not completely suppress all differentiation markers. Sall4a and Sall4b collaborate in maintenance of the pluripotent state but play distinct roles. Our work is novel in establishing such isoform-specific differences in ES cells.
Publication
Journal: Hepatology
September/14/2018
Abstract
Immune cells constitute an important element of tumor tissue. Accumulating evidence indicates their clinicopathological significance in predicting prognosis and therapeutic efficacy. Nonetheless, the combinations of immune cells forming the immune microenvironment and their association with histological findings remain largely unknown. Moreover, it is unclear which immune cells or immune microenvironments are the most prognostically significant. Here, we comprehensively analyzed the immune microenvironment and its intratumor heterogeneity in 919 regions of 158 hepatocellular carcinomas (HCCs), and the results were compared with the corresponding histological and prognostic data. Consequently, we classified the immune microenvironment of HCC into three distinct immunosubtypes: Immune-high, Immune-mid, and Immune-low. The Immune-high subtype was characterized by increased B-/plasma-cell and T cell infiltration, and the Immune-high subtype and B-cell infiltration were identified as independent positive prognostic factors. Varying degrees of intratumor heterogeneity of the immune microenvironment were observed, some of which reflected the multistep nature of HCC carcinogenesis. However, the predominant pattern of immunosubtype and immune cell infiltration of each tumor was prognostically important. Of note, the Immune-high subtype was associated with poorly differentiated HCC, cytokeratin 19 (CK19)+ , and/or Sal-like protein 4 (SALL4)+ high-grade HCC, and Hoshida's S1/Boyault's G2 subclasses. Furthermore, patients with high-grade HCC of the predominant Immune-high subtype had significantly better prognosis. These results provide a rationale for evaluating the immune microenvironment in addition to the usual histological/molecular classification of HCC.
CONCLUSIONS
The immune microenvironment of HCC can be classified into three immunosubtypes (Immune-high, Immune-mid, and Immune-low) with additional prognostic impact on histological and molecular classification of HCC. (Hepatology 2018).
load more...