Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(45)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Journal of Leukocyte Biology
August/1/2001
Abstract
Interferons (IFNs) are a family of multifunctional cytokines that activate transcription of subsets of genes. The gene products induced by IFNs are responsible for IFN antiviral, antiproliferative, and immunomodulatory properties. To obtain a more comprehensive list and a better understanding of the genes regulated by IFNs, we compiled data from many experiments, using two different microarray formats. The combined data sets identified >300 IFN-stimulated genes (ISGs). To provide new insight into IFN-induced cellular phenotypes, we assigned these ISGs to functional categories. The data are accessible on the World Wide Web at http://www.lerner.ccf.org/labs/williams/, including functional categories and individual genes listed in a searchable database. The entries are linked to GenBank and Unigene sequence information and other resources. The goal is to eventually compile a comprehensive list of all ISGs. Recognition of the functions of the ISGs and their specific roles in the biological effects of IFNs is leading to a greater appreciation of the many facets of these intriguing and essential cytokines. This review focuses on the functions of the ISGs identified by analyzing the microarray data and focuses particularly on new insights into the protein kinase RNA-regulated (PRKR) protein, which have been made possible with the availability of PRKR-null mice.
Publication
Journal: Arthritis and rheumatism
July/13/2006
Abstract
OBJECTIVE
Peripheral blood mononuclear cells (PBMCs) from patients with systemic lupus erythematosus (SLE) have increased expression of genes typically induced by type I interferon (IFN). However, it has been difficult to identify and quantify the factors responsible for activation of the IFN pathway in SLE. To characterize these mediators, we developed an assay that measures the functional effects of plasma or serum components on the gene expression of cultured target cells.
METHODS
WISH epithelial cell line cells were cultured with medium, with recombinant IFNalpha, IFNbeta, or IFNgamma, or with 50% plasma from SLE patients (n = 73), rheumatoid arthritis (RA) patients (n = 19), or healthy donors (n = 30). Real-time quantitative polymerase chain reaction was used to determine WISH cell expression of IFN target genes, including PRKR, IFIT1, IFI44, MX1, and C1orf29 (preferentially induced by IFNalpha) and CXCL9 (Mig) (preferentially induced by IFNgamma).
RESULTS
IFNalpha-regulated genes were induced by SLE plasma samples, but not by most of the RA or healthy control plasma samples. The activity in SLE plasma was inhibited >90% by anti-IFNalpha antibody, but not by anti-IFNbeta or anti-IFNgamma antibodies. The expression of each IFNalpha target gene induced by SLE plasma correlated with the expression of that gene studied ex vivo in PBMCs from the same patients and with the titer of anti-RNA binding protein (anti-RBP)-specific autoantibodies. Plasma activity paralleled PBMC expression of IFNalpha-inducible genes over time.
CONCLUSIONS
IFNalpha in SLE plasma is a major stimulus of IFN target gene expression and is related to expression of those genes in PBMCs from SLE patients and to the titer of anti-RBP autoantibodies. These data provide additional support for the view that IFNalpha mediates immune system activation and dysregulation in SLE.
Publication
Journal: Genomics
March/24/1996
Abstract
Primary congenital glaucoma (GLC3) is an inherited eye disorder that accounts for 0.01-0.04% of total blindness. Although a large number of chromosomal abnormalities have already been reported in patients with congenital glaucoma, the precise location and pathogenesis of this condition remain elusive. By using a group of 17 GLC3 families and a combination of both candidate regional and general positional mapping strategies, we have mapped a locus for GLC3 to the short arm of chromosome 2. Eleven families showed no recombination with 3 tightly linked markers of D2S177 (Z = 9.40), D2S1346 (Z = 8.83), and D2S1348 (Z = 8.90) with a combined haplotype lod score of 11.50. Haplotype and multipoint linkage analyses of 14 DNA markers from 2p indicated that the disease gene is located in the 2p21 region and is flanked by DNA markers D2S1788/D2S1325 (theta = 0.03; Z = 5.42) and D2S1356 (theta = 0.05; Z = 4.69). Inspection of haplotype and heterogeneity analysis confirmed that 6 families are not linked to the 2p21 region, thus providing the first proof of genetic heterogeneity for this phenotype. We therefore designated the locus on 2p21 GLC3A and positioned it in the overall linkage map of Tel-D2S405-D2S367-(D2S1788/D2S1325)-[(GLC3A++ +, D2S177)/(D2S1346/D2S1348)]-D2S1356-D2S119- D2S1761-D2S1248-D2S1352-D2S406- D2S441-Cen. Of the seven genes mapping to the 2p21 region, CAD, CALM2, and LHCGR are centromeric to D2S119 and can be excluded as a candidate for GLC3A, but mutations in PRKR, TIK, SOS1, or SPTBN1 may still be accountable for this phenotype. As human 2p21 shows homology with mouse chromosomes 11 and 17, the homolog of GLC3A is expected to reside on one of these two chromosomes.
Publication
Journal: Hepatology
September/29/2011
Abstract
Many etiologies of fatty liver disease (FLD) are associated with the hyperactivation of one of the three pathways composing the unfolded protein response (UPR), which is a harbinger of endoplasmic reticulum (ER) stress. The UPR is mediated by pathways initiated by PRKR-like endoplasmic reticulum kinase, inositol-requiring 1A/X box binding protein 1, and activating transcription factor 6 (ATF6), and each of these pathways has been implicated to have a protective or pathological role in FLD. We used zebrafish with FLD and hepatic ER stress to explore the relationship between Atf6 and steatosis. A mutation of the foie gras (foigr) gene caused FLD and hepatic ER stress. The prolonged treatment of wild-type larvae with tunicamycin (TN), which caused chronic ER stress, phenocopied foigr. In contrast, acute exposure to a high dose of TN robustly activated the UPR but was less effective at inducing steatosis. The sterol regulatory element binding protein transcription factors were not required for steatosis in any of these models. Instead, depleting larvae of active Atf6 either through a membrane-bound transcription factor peptidase site 1 mutation or an atf6 morpholino injection protected them against steatosis caused by chronic ER stress, but exacerbated steatosis caused by acute TN treatment.
CONCLUSIONS
ER stress causes FLD. A loss of Atf6 prevents steatosis caused by chronic ER stress but can also potentiate steatosis caused by acute ER stress. This demonstrates that Atf6 can play both protective and pathological roles in FLD.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
June/2/2016
Abstract
Ubiquitous expression of amyotrophic lateral sclerosis (ALS)-causing mutations in superoxide dismutase 1 (SOD1) provokes noncell autonomous paralytic disease. By combining ribosome affinity purification and high-throughput sequencing, a cascade of mutant SOD1-dependent, cell type-specific changes are now identified. Initial mutant-dependent damage is restricted to motor neurons and includes synapse and metabolic abnormalities, endoplasmic reticulum (ER) stress, and selective activation of the PRKR-like ER kinase (PERK) arm of the unfolded protein response. PERK activation correlates with what we identify as a naturally low level of ER chaperones in motor neurons. Early changes in astrocytes occur in genes that are involved in inflammation and metabolism and are targets of the peroxisome proliferator-activated receptor and liver X receptor transcription factors. Dysregulation of myelination and lipid signaling pathways and activation of ETS transcription factors occur in oligodendrocytes only after disease initiation. Thus, pathogenesis involves a temporal cascade of cell type-selective damage initiating in motor neurons, with subsequent damage within glia driving disease propagation.
Publication
Journal: Endocrine-Related Cancer
August/21/2005
Abstract
RET/PTC rearrangements represent key genetic events involved in papillary thyroid carcinoma (PTC) initiation. The aim of the present study was to identify the early changes in gene expression induced by RET/PTC in thyroid cells. For this purpose, microarray analysis was conducted on PCCL3 cells conditionally expressing the RET/PTC3 oncogene. Gene expression profiling 48 h after activation of RET/PTC3 identified a statistically significant modification of expression of 270 genes. Quantitative PCR confirmation of 20 of these demonstrated 90% accuracy of the microarray. Functional clustering of genes with greater than or less than 1.75-fold expression change (86 genes) revealed RET/PTC3-induced regulation of genes with key functions in apoptosis (Ripk3, Tdga), cell-cell signaling (Cdh6, Fn1), cell cycle (Il24), immune and inflammation response (Cxcl10, Scya2, Il6, Gbp2, Oas1, Tap1, RT1Aw2, C2ta, Irf1, Lmp2, Psme2, Prkr), metabolism (Aldob, Ptges, Nd2, Gss, Gstt1), signal transduction (Socs3, Nf1, Jak2, Cpg21, Dusp6, Socs1, Stat1, Stat3, Cish) and transcription (Nr4a1, Junb, Hfh1, Runx1, Foxe1). Genes coding for proteins involved in the immune response and in intracellular signal transduction pathways activated by cytokines and chemokines were strongly represented, indicating a critical role of RET/PTC3 in the early modulation of the immune response.
Publication
Journal: Infection and Immunity
February/21/2006
Abstract
To characterize the roles of Porphyromonas gingivalis and its components in disease processes, we investigated the cytokine profiles induced by live P. gingivalis, its lipopolysaccharide (LPS), and its major fimbrial protein, fimbrillin (FimA). A cytokine antibody array revealed that human monocyte-derived macrophages were induced to produce chemokines (e.g., monocyte chemoattractant protein 1, macrophage inflammatory protein 1beta [MIP-1beta], and MIP-3alpha) as early as 1 h after exposure to P. gingivalis, with production declining after 24 h of exposure. As expected, an extensive repertoire of inflammatory mediators increased subsequent to infection, most predominantly tumor necrosis factor alpha (TNF-alpha), interleukin 1beta (IL-1beta), IL-6, IL-10, and granulocyte-macrophage colony-stimulating factor. The induction of cytokines by P. gingivalis was not triggered simply by bacterial cell surface components, since purified P. gingivalis LPS and FimA induced similar patterns of cytokines, while the pattern of cytokines induced by live P. gingivalis was significantly different, indicating that the host defense system senses live bacteria differently than it does the cell surface components LPS and FimA. To further understand the mechanisms by which live P. gingivalis and its components exert their effects, we used a high-throughput immunoblot screening approach (Becton-Dickinson PowerBlot) to analyze intracellular proteins involved in P. gingivalis infection in human macrophages. Exposure of human macrophages to either live P. gingivalis, its LPS, or its FimA protein led to the up-regulation of 12, 8, and 10 proteins and the down-regulation of 15, 8, and 17 proteins, respectively. The expression of proteins involved in gene transcription (e.g., monocyte enhancer factor 2D [MEF2D], signal transducer and activator of transcription 1 [STAT1], STAT3, STAT6, and IL enhancer binding factors [ILF3]), of protein kinases (e.g., mitogen-activated protein kinase 3 [MAPK3], MAP3K8, double-stranded RNA-activated protein kinase [PRKR], and MAP2K4), and of proteins involved in immune responses (e.g., TNF super family member 6 [TNFSF6] and interferon-induced protein with tetratricopeptide repeat 4 [IFIT4]), apoptosis (e.g., genes associated with retinoid interferon-induced mortality 19 [GRIM19]), and other fundamental cellular processes (e.g., clathrin heavy-chain polypeptide, culreticulin, and Ras-associated protein RAB27A) was found to be modulated differentially by P. gingivalis, LPS, and FimA. These differential changes are interpreted as preferential signal pathway activation in host immune/inflammatory responses to P. gingivalis infection.
Publication
Journal: International Journal of Radiation Biology
June/15/2010
Abstract
OBJECTIVE
Ionising radiation (IR) can evoke a series of biochemical events inside the cell. However, whether IR can directly induce endoplasmic reticulum (ER) stress is not clear. In our previous study, we found that there might be a causative link between IR and ER stress. In this study, we further characterised the type of ER stress induced by IR.
METHODS
Rat intestinal epithelial cells IEC-6 were irradiated at a dose of 10 Gy, and total RNA and proteins were harvested at indicated time points. The mRNA and protein expression of immunoglobulin heavy chain binding protein (BiP) and glucose regulated protein 94 (GRP94) was detected along with proteins associated with ER stress signal pathways.
RESULTS
Our results indicated that IR induced up-regulation of ER stress marker including BiP and GRP94 at protein and mRNA levels in IEC-6 cells. Increased phosphorylation of eukaryotic translation initiation factor 2 (eIF2alpha) and induced mRNA splicing of X-box binding protein 1 (XBP1) suggested that PERK (interferon-induced double-stranded RNA-activated protein kinase (PRKR) -like endoplasmic reticulum kinase) and IRE1 (inositol requirement 1) signal transduction pathways were involved in this kind of ER stress. However, the active form of activating transcription factor 6 (ATF6) did not change significantly in irradiated cells, which suggested that the ATF6 pathway was not involved.
CONCLUSIONS
Thus, we concluded that IR could induce moderate ER stress directly in IEC-6 cells.
Publication
Journal: Cell Stress and Chaperones
June/10/2015
Abstract
Accumulation of excess hepatic lipids contributes to insulin resistance and liver disease associated with endoplasmic reticulum (ER) stress. Exendin-4 is an agonist of the glucagon-like peptide 1 receptor and plays a role in improving insulin resistance and liver disease by increasing silent mating type information regulation 2 homolog (SIRT) 1. However, the effects and mechanism of action of exendin-4 on responses to palmitic acid (PA)-induced ER stress in hepatocytes have not been clearly defined. We investigated whether exendin-4 attenuates PA-induced ER stress via SIRT1 in HepG2 cells. PA treatment induced increased expression of PRKR-like endoplasmic reticulum kinase, inositol-requiring kinase 1α (IRE1α), activating transcription factor 6 (ATF6), and C/EBP homologous protein (CHOP) mRNA. Exendin-4 decreased the expression of P-IRE1α, ATF6, X-box binding protein-1 and CHOP, and increased the expression of SERCA2b. A significant decrease in the hepatic expression of PUMA, BAX, cytochrome c, and cleaved caspase-3 were observed in hepatocytes treated with exendin-4. The TUNEL assay consistently showed that exendin-4 reversed hepatocyte apoptosis induced by treatment with PA. Inhibition of SIRT1 by nicotinamide and siRNA significantly increased the expression of ER stress marker genes in cells treated with both PA and exendin-4. In conclusion, increased SIRT1 by exendin-4 attenuates PA-induced ER stress and mitochondrial dysfunction in hepatocytes.
Publication
Journal: Journal of Biological Chemistry
December/5/2018
Abstract
PRKR-like endoplasmic reticulum kinase (PERK) is one of the major sensor proteins that detect protein folding imbalances during endoplasmic reticulum (ER) stress. However, it remains unclear how ER stress activates PERK to initiate a downstream unfolded protein response (UPR). Here, we found that PERK's luminal domain can recognize and selectively interact with misfolded proteins but not with native proteins. Screening a phage-display library, we identified a peptide substrate, P16, of the PERK luminal domain and confirmed that P16 efficiently competes with misfolded proteins for binding this domain. To unravel the mechanism by which the PERK luminal domain interacts with misfolded proteins, we determined the crystal structure of the bovine PERK luminal domain complexed with P16 to 2.8-Å resolution. The structure revealed that PERK's luminal domain binds the peptide through a conserved hydrophobic groove. Substitutions within hydrophobic regions of the PERK luminal domain abolished the binding between PERK and misfolded proteins. We also noted that peptide binding results in major conformational changes in the PERK luminal domain that may favor PERK oligomerization. The structure of the PERK luminal domain-P16 complex suggested stacking of the luminal domain that leads to PERK oligomerization and activation via autophosphorylation after ligand binding. Collectively, our structural and biochemical results strongly support a ligand-driven model in which the PERK luminal domain interacts directly with misfolded proteins to induce PERK oligomerization and activation, resulting in ER stress signaling and the UPR.
load more...