Type II diabetes mellitus
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(13)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: The Lancet
May/2/2005
Abstract
Type 2 diabetes mellitus has become an epidemic, and virtually no physician is without patients who have the disease. Whereas insulin insensitivity is an early phenomenon partly related to obesity, pancreas beta-cell function declines gradually over time already before the onset of clinical hyperglycaemia. Several mechanisms have been proposed, including increased non-esterified fatty acids, inflammatory cytokines, adipokines, and mitochondrial dysfunction for insulin resistance, and glucotoxicity, lipotoxicity, and amyloid formation for beta-cell dysfunction. Moreover, the disease has a strong genetic component, but only a handful of genes have been identified so far: genes for calpain 10, potassium inward-rectifier 6.2, peroxisome proliferator-activated receptor gamma, insulin receptor substrate-1, and others. Management includes not only diet and exercise, but also combinations of anti-hyperglycaemic drug treatment with lipid-lowering, antihypertensive, and anti platelet therapy.
Publication
Journal: Diabetes
November/29/2000
Abstract
Glucose stimulates insulin secretion by generating triggering and amplifying signals in beta-cells. The triggering pathway is well characterized. It involves the following sequence of events: entry of glucose by facilitated diffusion, metabolism of glucose by oxidative glycolysis, rise in the ATP-to-ADP ratio, closure of ATP-sensitive K+ (KATP) channels, membrane depolarization, opening of voltage-operated Ca2+ channels, Ca2+ influx, rise in cytoplasmic free Ca2+ concentration ([Ca2+]i), and activation of the exocytotic machinery. The amplifying pathway can be studied when beta-cell [Ca2+]i is elevated and clamped by a depolarization with either a high concentration of sulfonylurea or a high concentration of K+ in the presence of diazoxide (K(ATP) channels are then respectively blocked or held open). Under these conditions, glucose still increases insulin secretion in a concentration-dependent manner. This increase in secretion is highly sensitive to glucose (produced by as little as 1-6 mmol/l glucose), requires glucose metabolism, is independent of activation of protein kinases A and C, and does not seem to implicate long-chain acyl-CoAs. Changes in adenine nucleotides may be involved. The amplification consists of an increase in efficacy of Ca2+ on exocytosis of insulin granules. There exists a clear hierarchy between both pathways. The triggering pathway predominates over the amplifying pathway, which remains functionally silent as long as [Ca2+]i has not been raised by the first pathway; i.e., as long as glucose has not reached its threshold concentration. The alteration of this hierarchy by long-acting sulfonylureas or genetic inactivation of K(ATP) channels may lead to inappropriate insulin secretion at low glucose. The amplifying pathway serves to optimize the secretory response not only to glucose but also to nonglucose stimuli. It is impaired in beta-cells of animal models of type 2 diabetes, and indirect evidence suggests that it is altered in beta-cells of type 2 diabetic patients. Besides the available drugs that act on K(ATP) channels and increase the triggering signal, novel drugs that correct a deficient amplifying pathway would be useful to restore adequate insulin secretion in type 2 diabetic patients.
Publication
Journal: Biochimie
June/27/2005
Abstract
This review will provide insight on the current understanding of the regulation of insulin signaling in both physiological and pathological conditions through modulations that occur with regards to the functions of the insulin receptor substrate 1 (IRS1). While the phosphorylation of IRS1 on tyrosine residue is required for insulin-stimulated responses, the phosphorylation of IRS1 on serine residues has a dual role, either to enhance or to terminate the insulin effects. The activation of PKB in response to insulin propagates insulin signaling and promotes the phosphorylation of IRS1 on serine residue in turn generating a positive-feedback loop for insulin action. Insulin also activates several kinases and these kinases act to induce the phosphorylation of IRS1 on specific sites and inhibit its functions. This is part of the negative-feedback control mechanism induced by insulin that leads to termination of its action. Agents such as free fatty acids, cytokines, angiotensin II, endothelin-1, amino acids, cellular stress and hyperinsulinemia, which induce insulin resistance, lead to both activation of several serine/threonine kinases and phosphorylation of IRS1. These agents negatively regulate the IRS1 functions by phosphorylation but also via others molecular mechanisms (SOCS expression, IRS degradation, O-linked glycosylation) as summarized in this review. Understanding how these agents inhibit IRS1 functions as well as identification of kinases involved in these inhibitory effects may provide novel targets for development of strategies to prevent insulin resistance.
Publication
Journal: Journal of Biological Chemistry
November/23/2004
Publication
Journal: Science
March/8/1999
Abstract
Glucose metabolism in glycolysis and in mitochondria is pivotal to glucose-induced insulin secretion from pancreatic beta cells. One or more factors derived from glycolysis other than pyruvate appear to be required for the generation of mitochondrial signals that lead to insulin secretion. The electrons of the glycolysis-derived reduced form of nicotinamide adenine dinucleotide (NADH) are transferred to mitochondria through the NADH shuttle system. By abolishing the NADH shuttle function, glucose-induced increases in NADH autofluorescence, mitochondrial membrane potential, and adenosine triphosphate content were reduced and glucose-induced insulin secretion was abrogated. The NADH shuttle evidently couples glycolysis with activation of mitochondrial energy metabolism to trigger insulin secretion.
Publication
Journal: Biochemical and Biophysical Research Communications
February/12/2003
Abstract
Pancreatic beta-cells exposed to hyperglycemia produce reactive oxygen species (ROS). Because beta-cells are sensitive to oxidative stress, excessive ROS may cause dysfunction of beta-cells. Here we demonstrate that mitochondrial ROS suppress glucose-induced insulin secretion (GIIS) from beta-cells. Intracellular ROS increased 15min after exposure to high glucose and this effect was blunted by inhibitors of the mitochondrial function. GIIS was also suppressed by H(2)O(2), a chemical substitute for ROS. Interestingly, the first-phase of GIIS could be suppressed by 50 microM H(2)O(2). H(2)O(2) or high glucose suppressed the activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme, and inhibitors of the mitochondrial function abolished the latter effects. Our data suggested that high glucose induced mitochondrial ROS, which suppressed first-phase of GIIS, at least in part, through the suppression of GAPDH activity. We propose that mitochondrial overwork is a potential mechanism causing impaired first-phase of GIIS in the early stages of diabetes mellitus.
Publication
Journal: Journal of Biological Chemistry
September/5/2001
Abstract
It is known well that activation of the hexosamine pathway causes insulin resistance, but how this activation influences pancreatic beta-cell function remains unclear. In this study, we found that in isolated rat islets adenovirus-mediated overexpression of glutamine:fructose-6-phosphate amidotransferase (GFAT), the first and rate-limiting enzyme of the hexosamine pathway, leads to deterioration of beta-cell function, which is similar to that found in diabetes. Overexpression of GFAT or treatment with glucosamine results in impaired glucose-stimulated insulin secretion and reduction in the expression levels of several beta-cell specific genes (insulin, GLUT2, and glucokinase). Additionally, the DNA binding activity of PDX-1, an important transcription factor for these three genes, was markedly reduced. These phenomena were not mimicked by the induction of O-linked glycosylation with an inhibitor of O-GlcNAcase, PUGNAc. It was also found that glucosamine increases hydrogen peroxide levels and that several hexosamine pathway-mediated changes were suppressed by treatment with the antioxidant N-acetyl-l-cysteine. In conclusion, activation of the hexosamine pathway leads to deterioration of beta-cell function through the induction of oxidative stress rather than O-linked glycosylation. Thus, the hexosamine pathway may contribute to the deterioration of beta-cell function found in diabetes.
Publication
Journal: Journal of Clinical Investigation
February/5/1997
Abstract
Prolonged poor glycemic control in non-insulin-dependent diabetes mellitus patients often leads to a decline in insulin secretion from pancreatic beta cells, accompanied by a decrease in the insulin content of the cells. As a step toward elucidating the pathophysiological background of the so-called glucose toxicity to pancreatic beta cells, we induced glycation in HIT-T15 cells using a sugar with strong deoxidizing activity, D-ribose, and examined the effects on insulin gene transcription. The results of reporter gene analyses revealed that the insulin gene promoter is more sensitive to glycation than the control beta-actin gene promoter; approximately 50 and 80% of the insulin gene promoter activity was lost when the cells were kept for 3 d in the presence of 40 and 60 mM D-ribose, respectively. In agreement with this, decrease in the insulin mRNA and insulin content was observed in the glycation-induced cells. Also, gel mobility shift analyses using specific antiserum revealed decrease in the DNA-binding activity of an insulin gene transcription factor, PDX-1/IPF1/STF-1. These effects of D-ribose seemed almost irreversible but could be prevented by addition of 1 mM aminoguanidine or 10 mM N-acetylcysteine, thus suggesting that glycation and reactive oxygen species, generated through the glycation reaction, serve as mediators of the phenomena. These observations suggest that protein glycation in pancreatic beta cells, which occurs in vivo under chronic hyperglycemia, suppresses insulin gene transcription and thus can explain part of the beta cell glucose toxicity.
Publication
Journal: Journal of Molecular Medicine
November/6/2005
Abstract
Pancreatic beta-cell dysfunction and insulin resistance are observed in type 2 diabetes. Under diabetic conditions, oxidative stress and ER stress are induced in various tissues, leading to activation of the JNK pathway. This JNK activation suppresses insulin biosynthesis and interferes with insulin action. Indeed, suppression of the JNK pathway in diabetic mice improves insulin resistance and ameliorates glucose tolerance. Thus, the JNK pathway plays a central role in pathogenesis of type 2 diabetes and may be a potential target for diabetes therapy.
Publication
Journal: Molecular Endocrinology
January/3/1996
Abstract
The most important regulator of insulin gene expression in pancreatic beta- cells is glucose, which affects gene transcription, mRNA translation, and secretion. Insulin gene transcription is both positively and negatively regulated by glucose. Recently, we have shown that the inhibition of insulin gene transcription caused by passaging HIT T-15 beta-cells, in the presence of high glucose, was due, in part, to reduced expression of a key regulator of insulin enhancer-mediated expression, somatostatin transcription factor-1 (STF-1). In this study, we have examined whether the activity of the other essential transcription regulators of insulin gene expression, the RIPE3b1 and insulin control element (ICE) activators, were also influenced in these HIT T-15 cells. The results show that the binding and trans-activation functions of the RIPE3b1 activator are reduced in parallel with the loss in STF-1 and insulin gene expression. In contrast, the regulatory properties of the ICE activator are unaffected. Our studies indicate that insulin gene transcription is inhibited by glucose through a mechanism involving reduced expression of both the RIPE3b1 and STF-1 activators in HIT T-15 cells but is independent of the ICE activator.
Publication
Journal: Diabetes
April/4/2001
Abstract
Apoptosis is a physiological form of cell death that occurs during normal development, and critical mediators of this process include caspases, reactive oxygen species, and Ca2+. Excessive apoptosis of the pancreatic beta-cell has been associated with diabetes. Consequently, apoptosis research has focused on how infiltrating macrophages or cytotoxic T-cells might kill pancreatic beta-cells using cytokines or death receptor triggering. Meanwhile, the intracellular events in the target beta-cell have been largely ignored. Elucidation of such targets might help develop improved treatment strategies for diabetes. This article will outline recent developments in apoptosis research, with emphasis on mechanisms that may be relevant to beta-cell death in type 1 and type 2 diabetes. Several of the models proposed in beta-cell killing converge on Ca2+ signaling, indicating that the pancreatic beta-cell may be an ideal system in which to carefully dissect the role of Ca2+ during apoptosis.
Publication
Journal: American Journal of Physiology - Endocrinology and Metabolism
March/1/2005
Abstract
The beta-cell is equipped with at least six voltage-gated Ca2+ (CaV) channel alpha1-subunits designated CaV1.2, CaV1.3, CaV2.1, CaV2.2, CaV2.3, and CaV3.1. These principal subunits, together with certain auxiliary subunits, assemble into different types of CaV channels conducting L-, P/Q-, N-, R-, and T-type Ca2+ currents, respectively. The beta-cell shares customary mechanisms of CaV channel regulation with other excitable cells, such as protein phosphorylation, Ca2+-dependent inactivation, and G protein modulation. However, the beta-cell displays some characteristic features to bring these mechanisms into play. In islet beta-cells, CaV channels can be highly phosphorylated under basal conditions and thus marginally respond to further phosphorylation. In beta-cell lines, CaV channels can be surrounded by tonically activated protein phosphatases dominating over protein kinases; thus their activity is dramatically enhanced by inhibition of protein phosphatases. During the last 10 years, we have revealed some novel mechanisms of beta-cell CaV channel regulation under physiological and pathophysiological conditions, including the involvement of exocytotic proteins, inositol hexakisphosphate, and type 1 diabetic serum. This minireview highlights characteristic features of customary mechanisms of CaV channel regulation in beta-cells and also reviews our studies on newly identified mechanisms of beta-cell CaV channel regulation.
Publication
Journal: Molecular and Cellular Endocrinology
December/12/2001
Abstract
In a new experimental type 2 diabetic syndrome, a 40% reduction of pancreatic beta cells was observed by morphometric analysis. In diabetic islets, as compared to control islets, insulin release was decreased in response to high glucose but not to other stimuli, and total glucose oxidation and utilization were unchanged or slightly reduced. The extent of metabolic and functional impairment appeared proportional to the beta-cell loss. However, a substantial decrease was found in protein level and activity (by 77 and 60%, respectively, versus controls) of mitochondrial FAD-glycerophosphate dehydrogenase (mGDH), the key enzyme of the glycerophosphate shuttle. Interestingly, in diabetic islets, as recently reported for mGDH-deficient transgenic mice, definite functional alterations (mainly in response to D-glyceraldehyde) were only obtained upon pharmacological blockade of the second shuttle (i.e. malate-aspartate) responsible for mitochondrial transfer of reducing equivalents. In conclusion, in this diabetes model with reduction of beta-cell mass, the islets, despite decreased mGDH amount and activity, appear metabolically and functionally active in vitro, likely through the intervention of adaptive mechanisms, yet prone to failure in challenging situations.