Serotonergic synapse
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(15)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Pharmacology and Therapeutics
June/18/2002
Abstract
The serotonin (5-hydroxytryptamine, 5-HT) receptors have been divided into 7 subfamilies by convention, 6 of which include 13 different genes for G-protein-coupled receptors. Those subfamilies have been characterized by overlapping pharmacological properties, amino acid sequences, gene organization, and second messenger coupling pathways. Post-genomic modifications, such as alternative mRNA splicing or mRNA editing, creates at least 20 more G-protein-coupled 5-HT receptors, such that there are at least 30 distinct 5-HT receptors that signal through G-proteins. This review will focus on what is known about the signaling linkages of the G-protein-linked 5-HT receptors, and will highlight some fascinating new insights into 5-HT receptor signaling.
Publication
Journal: Trends in Pharmacological Sciences
January/29/2009
Abstract
The broadly distributed monoaminergic neurotransmitter serotonin (5-hydroxytryptamine, 5-HT) exerts its actions via 14 classes of receptor. With the exception of 5-HT3 receptors, which gate a cation-permeable ion channel, all 5-HT receptors are coupled to G proteins. The core features of transduction via 5-HT receptors are well established, but much still remains to be learned, in particular, with regard to native populations in the brain. In this article, we survey the current knowledge of cellular signaling at G-protein-coupled 5-HT receptors and focus on several novel (and surprising) insights that have emerged over the past few years. We also highlight several promising directions for future research that should improve the understanding of serotonin signaling and ultimately permit its therapeutic exploitation in the control of central nervous system disorders. In view of the diversity of transduction mechanisms engaged by 5-HT, much of this discussion is relevant to other classes of G-protein-coupled receptors.
Publication
Journal: Cell and Tissue Research
January/22/2007
Abstract
Serotonin (5-hydroxytryptamine, 5-HT) is, without doubt, the neurotransmitter for which the number of receptors is the highest. Fifteen genes encoding functional 5-HT receptors have been cloned in mammalian brain. 5-HT(3) receptors are ionotropic receptors, whereas all the others are metabotropic G-protein-coupled receptors (GPCRs). 5-HT receptor diversity is further increased by post-genomic modifications, such as alternative splicing (up to 10 splice variants for the 5-HT(4) receptor) or by mRNA editing in the case of 5-HT(2C) receptors. The cellular and behavioral implications of 5-HT(2C) receptor editing are of great physiological importance. Signaling of 5-HT receptors involves a great variety of pathways, but only some of these have been demonstrated in neurons. The classical view of neurotransmitter receptors localized within the synaptic cleft cannot be applied to 5-HT receptors, which are mostly (but not exclusively) localized at extra-synaptic locations either pre- or post-synaptically. 5-HT receptors are engaged in pre- or post-synaptic complexes composed of many GPCR-interacting proteins. The functions of these proteins are starting to be revealed. These proteins have been implicated in targeting, trafficking to or from the membrane, desensitization, and fine-tuning of signaling.
Publication
Journal: Trends in Neurosciences
November/25/2010
Abstract
Serotonin is an important neuromodulator associated with a wide range of physiological effects in the central nervous system. The exact mechanisms whereby serotonin influences brain development are not well understood, although studies in invertebrate and vertebrate model organisms are beginning to unravel a regulatory role for serotonin in neuronal morphology and circuit formation. Recent data suggest a developmental window during which altered serotonin levels permanently influence neuronal circuitry, however, the temporal constraints and molecular mechanisms responsible are still under investigation. Growing evidence suggests that alterations in early serotonin signaling contribute to a number of neurodevelopmental and neuropsychiatric disorders. Thus, understanding how altered serotonin signaling affects neuronal morphology and plasticity, and ultimately animal physiology and pathophysiology, will be of great significance.
Publication
Journal: Prostaglandins and Other Lipid Mediators
September/2/2010
Abstract
Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites of cytochrome P450 epoxygenase enzymes recognized as key players in vascular function and disease, primarily attributed to their potent vasodilator, anti-inflammatory and pro-angiogenic effects. Although EETs' actions in the central nervous system (CNS) appear to parallel those in peripheral tissue, accumulating evidence suggests that epoxyeicosanoid signaling plays different roles in neural tissue compared to peripheral tissue; roles that reflect distinct CNS functions, cellular makeup and intercellular relationships. This is exhibited at many levels including the expression of EETs-synthetic and -metabolic enzymes in central neurons and glial cells, EETs' role in neuro-glio-vascular coupling during cortical functional activation, the capacity for interaction between epoxyeicosanoid and neuroactive endocannabinoid signaling pathways, and the regulation of neurohormone and neuropeptide release by endogenous EETs. The ability of several CNS cell types to produce and respond to EETs suggests that epoxyeicosanoid signaling is a key integrator of cell-cell communication in the CNS, coordinating cellular responses across different cell types. Under pathophysiological conditions, such as cerebral ischemia, EETs protect neurons, astroglia and vascular endothelium, thus preserving the integrity of cellular networks unique to and essential for proper CNS function. Recognition of EETs' intimate involvement in CNS function in addition to their multi-cellular protective profile has inspired the development of therapeutic strategies against CNS diseases such as cerebral ischemia, tumors, and neural pain and inflammation that are based on targeting the cellular actions of EETs or their biosynthetic and metabolizing enzymes. Based upon the emerging importance of epoxyeicosanoids in cellular function and disease unique to neural systems, we propose that the actions of "neuroactive EETs" are best considered separately, and not in aggregate with all other peripheral EETs functions.
Publication
Journal: Cell and Tissue Research
January/22/2007
Abstract
The 5-HT(3) receptor is a ligand-gated ion channel activated by serotonin (5-HT). Although originally identified in the peripheral nervous system, the 5-HT(3) receptor is also ubiquitously expressed in the central nervous system. Sites of expression include several brain stem nuclei and higher cortical areas such as the amygdala, hippocampus, and cortex. On the subcellular level, both presynaptic and postsynaptic 5-HT(3) receptors can be found. Presynaptic 5-HT(3) receptors are involved in mediating or modulating neurotransmitter release. Postsynaptic 5-HT(3) receptors are preferentially expressed on interneurons. In view of this specific expression pattern and of the well-established role of 5-HT as a neurotransmitter shaping development, we speculate that 5-HT(3) receptors play a role in the formation and function of cortical circuits.
Publication
Journal: Biochimica et Biophysica Acta - General Subjects
August/20/2003
Abstract
The 5-HT(1A) agonist 8-hydroxy-2 (di-n-propylamino) tetralin (8-OH-DPAT) causes inhibition of caspase-3 and apoptosis via the extracellular signal-regulated kinases (ERK1/2) in hippocampal HN2-5 cells. Two 5-HT(1A) agonists, Repinotan hydrochloride (BAY x 3702) and 8-OH-DPAT, block caspase-3 activation and apoptosis caused by anoxia/reoxygenation and H(2)O(2) treatment. This is reversed upon transient expression of dominant negative Ras (N17Ras) and Raf-1 (Raf301), confirming the involvement of Ras and Raf-1 in this 5-HT(1A)-R->>ERK1/2->>caspase-3 pathway. A selective inhibitor of phospholipase Cbeta (PLCbeta) (U73122) but not a general protein kinase C (PKC) inhibitor (GFX) reversed the 5-HT(1A)-R-mediated ERK1/2 stimulation. However, both GFX and the PKCalpha and PKCbeta(1) inhibitor Gö6976 reversed the ERK1/2-mediated inhibition of caspase-3. ERK-dependent activation of only PKCalpha was observed in immunoprecipitates obtained from 5-HT(1A) agonist-treated HN2-5 cells. Finally, transient expression of kinase-negative PKCalpha eliminated the 8-OH-DPAT-evoked block on the H(2)O(2)-triggered caspase-3 stimulation, establishing PKCalpha as a link between ERK and caspase-3 (5-HT(1A)-R->>PLC->>ERK1/2->>PKCalpha->>caspase-3). Our results elucidate a novel yet general, neuroprotective pathway through which G protein-coupled receptors could cause inhibition of effector caspases, such as caspase-3.
Publication
Journal: Molecular Neurobiology
June/3/2004
Abstract
Among human serotonin (5-HT) receptor subtypes, each G protein-coupled receptor subtype is reported to have one G protein-signaling cascade. However, the signaling may not be as simple as previously thought to be. 5-HT5A receptors are probably the least well understood among the 5-HT receptors, but the authors found that 5-HT5A receptors couple to multiple signaling cascades. When the 5-HT5A receptors were expressed in undifferentiated C6 glioma cells, they modulated the level of second messengers. For example, activation of 5-HT5A receptors inhibited the adenylyl cyclase activity and subsequently reduced the cAMP level, as previously reported. In addition to this known signaling via Gi/Go, 5-HT5A receptors are coupled to the inhibition of ADP-ribosyl cyclase and cyclic ADP ribose formation. On the other hand, activation of 5-HT5A receptors transiently opened the K+ channels, presumably due to the increase in intracellular Ca2+ after formation of inositol (1,4,5) trisphosphate. The K+ currents were inhibited by both heparin and pretreatment with pertussis toxin, suggesting the cross-talk between Gi/Go protein and phopholipase C cascade. Thus, the authors results indicate that 5-HT5A receptors couple to multiple second messenger systems and may contribute to the complicated physiological and pathophysiological states. Although this multiple signaling has been reported only for 5-HT5A/5-HT1 receptors so far, it is possible that other 5-HT receptor subtypes bear similar complexity. As a result, in addition to the wide variety of expression patterns of each 5-HT receptor subtype, it is possible that multiple signal transduction systems may add complexity to the serotonergic system in brain function. The investigation of these serotonergic signaling and its impairment at cellular level may help to understand the symptoms of brain diseases.
Publication
Journal: Journal of Biological Chemistry
August/5/1998
Abstract
The study of signaling cascades and of functional interactions between 5-hydroxytryptamine (5-HT) receptor pathways with heterogenous brain cell populations remains an arduous task. We took advantage of a serotonergic cell line to elucidate cross-talks between 5-HT receptors and to demonstrate the involvement of two 5-HT2 receptor subtypes in the regulation of 5-HT1B/1D function. The inducible 1C11 cell line has the unique property of acquiring within 4 days a complete serotonergic phenotype (1C11* cells), including three 5-HT receptors. 5-HT1B/1D and 5-HT2B receptors are expressed since day 2 of the serotonergic differentiation while 5-HT2A receptors are induced at day 4. We first established that 5-HT2B receptors are coupled with the phospholipase A2 (PLA2)-mediated release of arachidonic acid (AA) and that the activation of 5-HT2B receptors in 1C11*d2 cells inhibits the 5-HT1B/1D receptor function via a cyclooxygenase-dependent AA metabolite. At day 4, this 5-HT2B-mediated inhibition of the 5-HT1B/1D function can be blocked upon concomitant 5-HT2A activation although a 5-HT2A/PLA2 positive coupling was evidenced. This suggests the existence in 1C11*d4 cells of pathway(s) for 5-HT2A receptors, distinct from PLC and PLA2. Finally, this study reveals the antagonistic roles of 5-HT2A and 5-HT2B receptors in regulating the function of 5-HT1B/1D, a receptor involved in neuropsychiatric disorders and migraine pathogenesis.
Publication
Journal: Molecular Endocrinology
February/7/2001
Abstract
We have investigated the cellular mechanisms by which changes in intracellular calcium (Ca2+) can differentially regulate gene expression. Two Ca2+ paradigms, involving prolonged and transient Ca2+ increases, were used. As a starting point, we studied the slow, prolonged elevation of Ca2+ caused by activation of 5-HT1 receptors. We had previously shown that 5-HT1 agonists inhibit calcitonin gene-related peptide (CGRP) transcription and secretion. The Ca2+ ionophore, ionomycin, was used to produce a prolonged elevation of the Ca2+ signal similar to that generated by 5-HT1 receptor agonists. Ionomycin treatment of the neuronal-like CA77 cell line specifically inhibited mitogen-activated protein (MAP) kinase stimulation of the CGRP enhancer and two synthetic MAP kinase-responsive reporter genes (4- to 10-fold). We then showed that ionomycin repression of promoter activity involved selective induction of MAP kinase phosphatase-1 (MKP-1), but not MKP-2, and that overexpression of MKP-1 was sufficient to repress CGRP enhancer activity. These effects were then compared with a Ca2+ paradigm involving a transient elevation in Ca2+ as seen after depolarization. At 4 h after the transient increase in Ca2+, the CGRP enhancer and synthetic MAP kinase-responsive reporter genes were stimulated. In contrast, exposure to depolarizing stimuli overnight caused only a less than 2-fold inhibition of promoter activity. We propose that the duration of the Ca2+ signal can determine the magnitude of a negative feedback loop that leads to differential regulation of MAP kinase-responsive genes.
Publication
Journal: Trends in Endocrinology and Metabolism
January/28/2002
Abstract
Studies of the serotonin (5-HT) receptors have illustrated several important concepts in G-protein-mediated signaling. These concepts include G-protein specificity and cellular specificity of signaling; mechanisms of transactivation; receptor states and constitutive receptor activity; and the structural basis of coupling. The 5-HT1 receptors couple via specific G(i)/G(o) proteins to inhibitory pathways [inhibition of adenylyl cyclase (AC) activity and regulation of ion channels], but also to stimulate phospholipase C, ACII, and the mitogen-activated protein kinase (MAPK) growth-signaling pathway. 5-HT1 receptors initiate novel endocytotic and Ca(2+)-dependent pathways to activate MAPK acutely, but can downregulate MAPK on chronic activation. These pathways are often mediated via distinct G(i)/G(o)-protein subtypes. Desensitization by multiple protein kinases via receptor phosphorylation is pathway selective. Structural determination of 5-HT1 receptor and G-protein domains that mediate G-protein-specific coupling and desensitization could lead to the development of highly selective ligands that directly regulate receptor-G-protein coupling.
Publication
Journal: FEBS Letters
April/4/2005
Abstract
The serotonin 5-hydroxytryptamine (5-HT4) receptor is of potential interest for the treatment of Alzheimer's disease because it increases memory and learning. In this study, we investigated the effect of zinc metalloprotease inhibitors on the amyloid precursor protein (APP) processing induced by the serotonin 5-HT4 receptor in vitro. We show that secretion of the non-amyloidogenic form of APP, sAPPalpha induced by the 5-HT4(e) receptor isoform was not due to a general boost of the constitutive secretory pathway but rather to its specific effect on alpha-secretase activity. Although the h5-HT4(e) receptor increased IP3 production, inhibition of PKC did not modify its effect on sAPPalpha secretion. In addition, we found that alpha secretase activity is regulated by the cAMP-regulated guanine nucleotide exchange factor, Epac and the small GTPase Rac.
Publication
Journal: Molecular Endocrinology
October/4/1998
Abstract
We have investigated the mechanisms underlying regulation of the calcitonin gene-related peptide (CGRP) cell-specific enhancer. Recently, we reported that this enhancer is inhibited by serotonin type-1 (5-HT1) agonists, similar to currently used antimigraine drugs. We have now tested whether this repression involves a mitogen-activated protein (MAP) kinase pathway. We first demonstrate that the CGRP enhancer is strongly (10-fold) activated by a constitutively active MAP kinase kinase (MEK1), yielding reporter activities 100-fold above the enhancerless control. The involvement of a MAP kinase pathway was confirmed by down-regulation of reporter activity upon cotransfection of a dominant negative Ras. Activation of the enhancer by MEK1 was blocked in a dose-dependent manner by the 5-HT1 receptor agonist CGS 12066A (CGS). Since it is not known whether the CGRP enhancer factors are immediate targets of MAP kinases, we then used EIk-1- and c-Jun-dependent reporter genes that are directly activated by the ERK (extracellular signal-regulated kinases) and JNK (c-Jun N-terminal kinase) MAP kinases. CGS treatment repressed the activation of both of these reporters, suggesting that at least two MAP kinases are the immediate targets of CGS-mediated repression. We further demonstrate that 5-HT1 agonists inactivate ERK by dephosphorylation, even in the presence of constitutively activated MEK1. This inactivation appears to be due to a marked increase in the level of MAP kinase phosphatase-1. These results have defined a novel and general mechanism by which 5-HT1 receptor agonists can repress MAP kinase activation of target genes, such as CGRP.
Publication
Journal: Neurochemistry International
May/18/1998
Abstract
Mechanisms underlying the 5-HT2A receptor induction of intracellular Ca2+ mobilization and Ca2+ influx in type I astroglial cells in primary culture from newborn rat cerebral cortex were evaluated. The 5-HT-evoked Ca(2+)-transients, inhibited by the 5-HT2A antagonists ketanserin or 4-(4-fluorobenzoyl)-1-(4-phenylbutyl) piperidine oxalate, consisted of an initial peak caused by inositol 1,4,5-trisphosphate (IP3)-mediated Ca2+ release from internal stores, and a second sustained part which was due to Ca2+ transport over the plasma membrane. The responses were pertussis toxin-insensitive, suppressed by the phospholipase C inhibitor neomycin and were inhibited by the Ca(2+)-ATPase inhibitor thapsigargin. Furthermore, the responses were inhibited by the IP3 receptor antagonist heparin. When the second sustained part of the 5-HT-evoked response was studied, it was concluded that Ca2+ influx was not a result of opening of voltage operated calcium channels of either L, N or T-type. Instead it appeared that Ca2+ entered the cells through specialized voltage independent Ca2+ channels which were dependent of the IP3 production and subsequent Ca2+ release from internal stores. From this, we conclude that 5-HT opens Ca2+ channels in astrocytes which closely resemble depletion-operated Ca2+ channels (DOCCs).
Publication
Journal: Experimental Gerontology
May/11/2003
Abstract
A large body of evidence supports a major role for the serotonin 5-HT(4) receptor in learning and memory and it is suggested that 5-HT(4) agonists may be beneficial for memory disorders such as Alzheimer's disease (AD). The 5-HT(4) receptors are members of the G protein-coupled receptor superfamily and are positively coupled to adenylyl cyclase. In this communication we show that a neuronal isoform of the human 5-HT(4) receptor, h5-HT(4(g)) regulates the metabolism of the amyloid precursor protein (APP695). This process is observed in Chinese hamster ovary (CHO) cells stably coexpressing the neuronal h5-HT(4(g)) receptor isoform as well as the human APP695. The 5-HT(4) agonists strongly stimulate the release of the non-amyloidogenic soluble amyloid precursor protein sAPPalpha as detected by immunoblot. Prucalopride was more potent than serotonin (5-HT) with regard to enhanced of sAPPalpha secretion. This process was blocked by a selective 5-HT(4) antagonist, GR113808. Furthermore, 5-HT(4) ligands enhance sAPPalpha secretion via cAMP-dependent and PKA-independent signalling pathways indicating there are alternative pathways by which the h5-HT(4) receptor via cAMP regulates APP metabolism. Because the alpha-cleavage event may preclude the formation of amyloidogenic peptides, and secreted sAPPalpha has putative neuroprotective and enhancing-memory properties, our present data suggest the 5-HT(4) receptor as a novel target for the treatment of AD.