p53 signaling pathway
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(10)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Oncogene
May/16/2005
Abstract
The p53 pathway responds to stresses that can disrupt the fidelity of DNA replication and cell division. A stress signal is transmitted to the p53 protein by post-translational modifications. This results in the activation of the p53 protein as a transcription factor that initiates a program of cell cycle arrest, cellular senescence or apoptosis. The transcriptional network of p53-responsive genes produces proteins that interact with a large number of other signal transduction pathways in the cell and a number of positive and negative autoregulatory feedback loops act upon the p53 response. There are at least seven negative and three positive feedback loops described here, and of these, six act through the MDM-2 protein to regulate p53 activity. The p53 circuit communicates with the Wnt-beta-catenin, IGF-1-AKT, Rb-E2F, p38 MAP kinase, cyclin-cdk, p14/19 ARF pathways and the cyclin G-PP2A, and p73 gene products. There are at least three different ubiquitin ligases that can regulate p53 in an autoregulatory manner: MDM-2, Cop-1 and Pirh-2. The meaning of this redundancy and the relative activity of each of these feedback loops in different cell types or stages of development remains to be elucidated. The interconnections between signal transduction pathways will play a central role in our understanding of cancer.
Pulse
Views:
1
Posts:
No posts
Rating:
Not rated
Publication
Journal: Oncogene
May/2/2001
Abstract
p53 protects mammals from neoplasia by inducing apoptosis, DNA repair and cell cycle arrest in response to a variety of stresses. p53-dependent arrest of cells in the G1 phase of the cell cycle is an important component of the cellular response to stress. Here we review recent evidence that implicates p53 in controlling entry into mitosis when cells enter G2 with damaged DNA or when they are arrested in S phase due to depletion of the substrates required for DNA synthesis. Part of the mechanism by which p53 blocks cells at the G2 checkpoint involves inhibition of Cdc2, the cyclin-dependent kinase required to enter mitosis. Cdc2 is inhibited simultaneously by three transcriptional targets of p53, Gadd45, p21, and 14-3-3 sigma. Binding of Cdc2 to Cyclin B1 is required for its activity, and repression of the cyclin B1 gene by p53 also contributes to blocking entry into mitosis. p53 also represses the cdc2 gene, to help ensure that cells do not escape the initial block. Genotoxic stress also activates p53-independent pathways that inhibit Cdc2 activity, activation of the protein kinases Chk1 and Chk2 by the protein kinases Atm and Atr. Chk1 and Chk2 inhibit Cdc2 by inactivating Cdc25, the phosphatase that normally activates Cdc2. Chk1, Chk2, Atm and Atr also contribute to the activation of p53 in response to genotoxic stress and therefore play multiple roles. p53 induces transcription of the reprimo, B99, and mcg10 genes, all of which contribute to the arrest of cells in G2, but the mechanisms of cell cycle arrest by these genes is not known. Repression of the topoisomerase II gene by p53 helps to block entry into mitosis and strengthens the G2 arrest. In summary, multiple overlapping p53-dependent and p53-independent pathways regulate the G2/M transition in response to genotoxic stress.
Publication
Journal: Nature Reviews Cancer
November/7/2006
Abstract
Mammalian cells that sustain oncogenic insults can invoke defensive programmes that either halt their division or trigger their apoptosis, but these countermeasures must be finely tuned to discriminate between physiological and potentially harmful growth-promoting states. By functioning specifically to oppose abnormally prolonged and sustained proliferative signals produced by activated oncogenes, the ARF tumour suppressor antagonizes functions of MDM2 to induce protective responses that depend on the p53 transcription factor and its many target genes. However, ARF has been reported to physically associate with proteins other than MDM2 and to have p53-independent activities, most of which remain controversial and poorly understood.
Publication
Journal: Cancer Research
May/8/2007
Abstract
The insulin-like growth factor 1 (IGF-1)-AKT-mTOR pathways sense the availability of nutrients and mitogens and respond by signaling for cell growth and division. The p53 pathway senses a variety of stress signals which will reduce the fidelity of cell growth and division, and responds by initiating cell cycle arrest, senescence, or apoptosis. This study explores four p53-regulated gene products, the beta1 and beta2 subunits of the AMPK, which are shown for the first time to be regulated by the p53 protein, TSC2, PTEN, and IGF-BP3, each of which negatively regulates the IGF-1-AKT-mTOR pathways after stress. These gene products are shown to be expressed under p53 control in a cell type and tissue-specific fashion with the TSC2 and PTEN proteins being coordinately regulated in those tissues that use insulin-dependent energy metabolism (skeletal muscle, heart, white fat, liver, and kidney). In addition, these genes are regulated by p53 in a stress signal-specific fashion. The mTOR pathway also communicates with the p53 pathway. After glucose starvation of mouse embryo fibroblasts, AMPK phosphorylates the p53 protein but does not activate any of the p53 responses. Upon glucose starvation of E1A-transformed mouse embryo fibroblasts, a p53-mediated apoptosis ensues. Thus, there is a great deal of communication between the p53 pathway and the IGF-1-AKT and mTOR pathways.
Publication
Journal: Cell Death and Differentiation
June/28/2007
Abstract
The p53 pathway is composed of hundreds of genes and their products that respond to a wide variety of stress signals. These responses to stress include apoptosis, cellular senescence or cell cycle arrest. In addition the p53-regulated genes produce proteins that communicate these stress signals to adjacent cells, prevent and repair damaged DNA and create feedback loops that enhance or attenuate p53 activity and communicate with other signal transduction pathways. Many questions remain to be explored in our understanding of how this network of genes plays a role in protection from cancers, therapy and integrating the homeostatic mechanisms of stress management and fidelity in a cell and organism. The goal of this chapter is to elucidate some of those questions and suggest new directions for this area of research.
Publication
Journal: Toxicology
February/27/2003
Abstract
Although toxicants may initiate cell damage or stress, the cellular proteins that are involved in control of cell cycle and apoptosis are the final arbiters of cell fate. The biochemical pathways that restrain cell cycle transition and/or induce cell death after stress are known as cell cycle checkpoints. These checkpoints maintain the fidelity of DNA replication, repair, and division. Herein, select cell cycle checkpoint signaling pathways will be discussed and how different components of these pathways are regulated by exogenous and endogenous agents, with focus on the p53 tumor suppressor signaling. The p53 protein is known to play a key role in growth arrest and apoptosis after cell stress, primarily through its ability to regulate the transcription of select downstream target genes in the cell. Further elucidation of the signaling pathways that control growth arrest and apoptosis will continue to provide insights to the complex cellular responses to environmental toxicants.
Publication
Journal: Seminars in Cancer Biology
September/11/2006
Abstract
Co-ordinated progression through the cell cycle is essential for the maintenance of genomic integrity. Several checkpoint mechanisms guarantee that the next step in cell cycle progression is only entered after error-free completion of the previous phase. Cell cycle deregulation caused by changes in 14-3-3 expression has been implicated in cancer formation. 14-3-3 proteins function at several key points in G(1)/S- and G(2)/M-transition by binding to regulatory proteins and modulating their function. In most cases, the association with 14-3-3 proteins requires a specific phosphorylation of the protein ligand and mediates cell cycle arrest. 14-3-3 binding may lead to cytoplasmic sequestration of the protein ligand but may also have other functional consequences. The 14-3-3sigma gene is induced by p53 and its product inhibits G(2)/M progression by cytoplasmatic sequestration of CDC2-cyclin B complexes. In addition, 14-3-3 proteins have been implicated in the transcriptional regulation of CDK-inhibitors as they modulate the transcription factors p53, FOXO and MIZ1. Effects of 14-3-3 proteins on cell cycle progression and the regulation of 14-3-3 activity during the cell cycle are reviewed in this chapter.
Publication
Journal: British Journal of Cancer
February/20/2002
Abstract
The p53 tumour suppressor protein inhibits malignant progression by mediating cell cycle arrest, apoptosis or repair following cellular stress. One of the major regulators of p53 function is the MDM2 protein, and multiple forms of cellular stress activate p53 by inhibiting the MDM2-mediated degradation of p53. Mutations in p53, or disruption of the pathways that allow activation of p53, seem to be a general feature of all cancers. Here we review recent advances in our understanding of the pathways that regulate p53 and the pathways that are induced by p53, as well as their implications for cancer therapy.
Publication
Journal: Trends in Pharmacological Sciences
May/10/2004
Abstract
Since its discovery 25 years ago, the p53 protein has emerged as a key tumor suppressor protein at the crossroads of cellular stress response pathways. Through these pathways, which can lead to cell-cycle arrest, DNA repair, cellular senescence, differentiation and apoptosis, p53 facilitates the repair and survival of damaged cells or eliminates severely damaged cells from the replicative pool to protect the organism. Because of these dynamic and multiple functions of p53, which are largely lost following mutations in the gene encoding p53, this molecule continues to be studied intensively in biomedical research, including the fields of toxicology and pharmacology. In this article, we briefly review the first 25 years of research on p53.
Publication
Journal: Critical Reviews in Oncology/Hematology
April/11/2000
Abstract
The tumor suppressor gene p53 is mutated in a large proportion of human cancers. In some cellular conditions like DNA damage, the p53 gene is induced and its gene product is posttranscriptionally activated. p53 works as a transcriptional activator and induces the expression of its downstream target genes. This review will explain why expression of the normal p53 gene leads to tumor growth suppression. The p53 has several biological effects involving cell-cycle arrest, DNA replication and repair, proliferation, apoptosis, angiogenesis inhibition, and cellular stress response. These effects of the p53 result mainly from the activation of expression of a large number of p53-target genes. Here we have focused on the biological functions of the transcriptional targets of p53.