Methods for treating cognitive deficits associated with fragile X syndrome
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(47)
Publication
Journal: Nature genetics
February/20/2007
Abstract
Despite efforts to profile prostate cancer, the genetic alterations and biological processes that correlate with the observed histological progression are unclear. Using laser-capture microdissection to isolate 101 cell populations, we have profiled prostate cancer progression from benign epithelium to metastatic disease. By analyzing expression signatures in the context of over 14,000 'molecular concepts', or sets of biologically connected genes, we generated an integrative model of progression. Molecular concepts that demarcate critical transitions in progression include protein biosynthesis, E26 transformation-specific (ETS) family transcriptional targets, androgen signaling and cell proliferation. Of note, relative to low-grade prostate cancer (Gleason pattern 3), high-grade cancer (Gleason pattern 4) shows an attenuated androgen signaling signature, similar to metastatic prostate cancer, which may reflect dedifferentiation and explain the clinical association of grade with prognosis. Taken together, these data show that analyzing gene expression signatures in the context of a compendium of molecular concepts is useful in understanding cancer biology.
Publication
Journal: Cancer cell
May/31/2010
Abstract
Chromosomal rearrangements fusing the androgen-regulated gene TMPRSS2 to the oncogenic ETS transcription factor ERG occur in approximately 50% of prostate cancers, but how the fusion products regulate prostate cancer remains unclear. Using chromatin immunoprecipitation coupled with massively parallel sequencing, we found that ERG disrupts androgen receptor (AR) signaling by inhibiting AR expression, binding to and inhibiting AR activity at gene-specific loci, and inducing repressive epigenetic programs via direct activation of the H3K27 methyltransferase EZH2, a Polycomb group protein. These findings provide a working model in which TMPRSS2-ERG plays a critical role in cancer progression by disrupting lineage-specific differentiation of the prostate and potentiating the EZH2-mediated dedifferentiation program.
Publication
Journal: Cancer cell
January/17/2006
Abstract
Molecular profiling of cancer at the transcript level has become routine. Large-scale analysis of proteomic alterations during cancer progression has been a more daunting task. Here, we employed high-throughput immunoblotting in order to interrogate tissue extracts derived from prostate cancer. We identified 64 proteins that were altered in prostate cancer relative to benign prostate and 156 additional proteins that were altered in metastatic disease. An integrative analysis of this compendium of proteomic alterations and transcriptomic data was performed, revealing only 48%-64% concordance between protein and transcript levels. Importantly, differential proteomic alterations between metastatic and clinically localized prostate cancer that mapped concordantly to gene transcripts served as predictors of clinical outcome in prostate cancer as well as other solid tumors.
Publication
Journal: Oncogene
January/14/2009
Abstract
Enhancer of zeste homolog 2 (EZH2) is a critical component of the polycomb-repressive complex 2 (PRC2), which is involved in gene silencing and histone H3 lysine 27 methylation. EZH2 has a master regulatory function in controlling such processes as stem cell differentiation, cell proliferation, early embryogenesis and X chromosome inactivation. Although benign epithelial cells express very low levels of EZH2, increased levels of EZH2 have been observed in aggressive solid tumors such as those of the prostate, breast and bladder. The mechanism by which EZH2 mediates tumor aggressiveness is unclear. Here, we demonstrate that EZH2 mediates transcriptional silencing of the tumor suppressor gene E-cadherin by trimethylation of H3 lysine 27. Histone deacetylase inhibitors can prevent EZH2-mediated repression of E-cadherin and attenuate cell invasion, suggesting a possible mechanism that may be useful for the development of therapeutic treatments. Taken together, these observations provide a novel mechanism of E-cadherin regulation and establish a functional link between dysregulation of EZH2 and repression of E-cadherin during cancer progression.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
September/27/2009
Abstract
Recurrent gene fusions are a prevalent class of mutations arising from the juxtaposition of 2 distinct regions, which can generate novel functional transcripts that could serve as valuable therapeutic targets in cancer. Therefore, we aim to establish a sensitive, high-throughput methodology to comprehensively catalog functional gene fusions in cancer by evaluating a paired-end transcriptome sequencing strategy. Not only did a paired-end approach provide a greater dynamic range in comparison with single read based approaches, but it clearly distinguished the high-level "driving" gene fusions, such as BCR-ABL1 and TMPRSS2-ERG, from potential lower level "passenger" gene fusions. Also, the comprehensiveness of a paired-end approach enabled the discovery of 12 previously undescribed gene fusions in 4 commonly used cell lines that eluded previous approaches. Using the paired-end transcriptome sequencing approach, we observed read-through mRNA chimeras, tissue-type restricted chimeras, converging transcripts, diverging transcripts, and overlapping mRNA transcripts. Last, we successfully used paired-end transcriptome sequencing to detect previously undescribed ETS gene fusions in prostate tumors. Together, this study establishes a highly specific and sensitive approach for accurately and comprehensively cataloguing chimeras within a sample using paired-end transcriptome sequencing.
Publication
Journal: Cancer discovery
April/30/2014
Abstract
Through a prospective clinical sequencing program for advanced cancers, four index cases were identified which harbor gene rearrangements of FGFR2, including patients with cholangiocarcinoma, breast cancer, and prostate cancer. After extending our assessment of FGFR rearrangements across multiple tumor cohorts, we identified additional FGFR fusions with intact kinase domains in lung squamous cell cancer, bladder cancer, thyroid cancer, oral cancer, glioblastoma, and head and neck squamous cell cancer. All FGFR fusion partners tested exhibit oligomerization capability, suggesting a shared mode of kinase activation. Overexpression of FGFR fusion proteins induced cell proliferation. Two bladder cancer cell lines that harbor FGFR3 fusion proteins exhibited enhanced susceptibility to pharmacologic inhibition in vitro and in vivo. Because of the combinatorial possibilities of FGFR family fusion to a variety of oligomerization partners, clinical sequencing efforts, which incorporate transcriptome analysis for gene fusions, are poised to identify rare, targetable FGFR fusions across diverse cancer types.
Publication
Journal: Cancer research
February/25/2008
Abstract
Although prostate-specific antigen (PSA) serum level is currently the standard of care for prostate cancer screening in the United States, it lacks ideal specificity and additional biomarkers are needed to supplement or potentially replace serum PSA testing. Emerging evidence suggests that monitoring the noncoding RNA transcript PCA3 in urine may be useful in detecting prostate cancer in patients with elevated PSA levels. Here, we show that a multiplex panel of urine transcripts outperforms PCA3 transcript alone for the detection of prostate cancer. We measured the expression of seven putative prostate cancer biomarkers, including PCA3, in sedimented urine using quantitative PCR on a cohort of 234 patients presenting for biopsy or radical prostatectomy. By univariate analysis, we found that increased GOLPH2, SPINK1, and PCA3 transcript expression and TMPRSS2:ERG fusion status were significant predictors of prostate cancer. Multivariate regression analysis showed that a multiplexed model, including these biomarkers, outperformed serum PSA or PCA3 alone in detecting prostate cancer. The area under the receiver-operating characteristic curve was 0.758 for the multiplexed model versus 0.662 for PCA3 alone (P = 0.003). The sensitivity and specificity for the multiplexed model were 65.9% and 76.0%, respectively, and the positive and negative predictive values were 79.8% and 60.8%, respectively. Taken together, these results provide the framework for the development of highly optimized, multiplex urine biomarker tests for more accurate detection of prostate cancer.
Publication
Journal: Journal of bone and mineral research : the official journal of the American Society for Bone and Mineral Research
June/6/2005
Abstract
To delineate the role of SDF-1 and CXCR4 in metastatic prostate cancer (CaP), positive correlations were established between SDF-1 levels and tumor metastasis. Neutralization of CXCR4 limited the number and the growth of intraosseous metastasis in vivo. Together, these in vivo metastasis data provide critical support that SDF-1/CXCR4 plays a role in skeletal metastasis.
BACKGROUND
Previously we determined that the stromal-derived factor-1 (SDF-1)/CXCR4 chemokine axis is activated in prostate cancer (CaP) metastasis to bone. To delineate the role of SDF-1/CXCR4 in CaP, we evaluated SDF-1 levels in a variety of tissues and whether neutralization of SDF-1 prevented metastasis and/or intraosseous growth of CaPs.
METHODS
SDF-1 levels were established in various mouse tissues by ELISA, immunohistochemistry, and in situ hybridization. To assess the role of SDF-1/CXCR4 in metastasis, bone metastases were established by administering CaP cells into the left cardiac ventricle of nude animals in the presence or absence of neutralizing CXCR4 antibody. The effect of SDF-1 on intraosseous growth of CaP cells was determined using intratibial injections and anti-CXCR4 antibodies and peptides.
RESULTS
There was a positive correlation between the levels of SDF-1 and tissues in which metastatic CaP lesions were observed. SDF-1 levels were highest in the pelvis, tibia, femur, liver, and adrenal/kidneys compared with the lungs, tongue, and eye, suggesting a selective effect. SDF-1 staining was generally low or undetectable in the center of the marrow and in the diaphysis. SDF-1 mRNA was localized to the metaphysis of the long bones nearest to the growth plate where intense expression was observed near the endosteal surfaces covered by osteoblastic and lining cells. Antibody to CXCR4 significantly reduced the total metastatic load compared with IgG control-treated animals. Direct intratibial injection of tumor cells followed by neutralizing CXCR4 antibody or a specific peptide that blocks CXCR4 also decreased the size of the tumors compared with controls.
CONCLUSIONS
These data provide critical support for a role of SDF-1/CXCR4 in skeletal metastasis. Importantly, these data show that SDF-1/CXCR4 participate in localizing tumors to the bone marrow for prostate cancer.
Publication
Journal: Cancer research
June/23/2008
Abstract
Recurrent gene fusions between the androgen-regulated gene TMPRSS2 and the ETS transcription factor family members ERG, ETV1, and ETV4 have been identified as a critical event in prostate cancer development. In this study, we characterized the prevalence and diversity of these rearrangements in hormone-refractory metastatic prostate cancer. We used a fluorescence in situ hybridization (FISH) split probe strategy to comprehensively evaluate TMPRSS2-ETS aberrations across 97 nonosseous metastatic sites of prostate cancer from 30 rapid autopsies of men who died of androgen-independent disease. Tissue microarrays were constructed representing multiple metastatic sites from each patient, and split signal FISH probes for TMPRSS2, ERG, ETV1, and ETV4 were used to assess for TMPRSS2-ETS rearrangements. In patients exhibiting these aberrations, multiple sites from an individual case harbored the same gene fusion molecular subtype suggesting clonal expansion of disease. The most common prostate cancer gene fusion, TMPRSS2-ERG, can be generated by the mechanism of interstitial deletion (Edel) about 39% to 60% of the time in clinically localized disease. Interestingly, we observed that all of the androgen-independent metastatic prostate cancer sites harboring TMPRSS2-ERG were associated with Edel. These findings suggest that TMPRSS2-ERG with Edel is an aggressive and, in this study, uniformly lethal molecular subtype of prostate cancer associated with androgen-independent disease.
Publication
Journal: Journal of clinical oncology : official journal of the American Society of Clinical Oncology
March/18/2002
Abstract
OBJECTIVE
Health-related quality-of-life (HRQOL) concerns are pivotal in choosing prostate cancer therapy. However, concurrent HRQOL comparison between brachytherapy, external radiation, radical prostatectomy, and controls is hitherto lacking. HRQOL effects of hormonal adjuvants and of cancer control after therapy also lack prior characterization.
METHODS
A cross-sectional survey was administered to patients who underwent brachytherapy, external-beam radiation, or radical prostatectomy during 4 years at an academic medical center and to age-matched controls. HRQOL among controls was compared with therapy groups. Comparison between therapy groups was performed using regression models to control covariates. HRQOL effects of cancer progression were evaluated.
RESULTS
One thousand fourteen subjects participated. Compared with controls, each therapy group reported bothersome sexual dysfunction; radical prostatectomy was associated with adverse urinary HRQOL; external-beam radiation was associated with adverse bowel HRQOL; and brachytherapy was associated with adverse urinary, bowel, and sexual HRQOL (P < or =.0002 for each). Hormonal adjuvant symptoms were associated with significant impairment (P <.002). More than 1 year after therapy, several HRQOL outcomes were less favorable among subjects after brachytherapy than after external radiation or radical prostatectomy. Progression-free subjects reported better sexual and hormonal HRQOL than subjects with increasing prostate-specific antigen (P <.0001).
CONCLUSIONS
Long-term HRQOL after prostate brachytherapy showed no benefit relative to radical prostatectomy or external-beam radiation and may be less favorable in some domains. Hormonal adjuvants can be associated with significant impairment. Progression-free survival is associated with HRQOL benefits. These findings facilitate patient counseling regarding HRQOL expectations and highlight the need for prospective studies sensitive to urinary irritative and hormonal concerns in addition to incontinence, sexual, and bowel HRQOL domains.
Publication
Journal: Cell
September/3/2012
Abstract
Pseudogene transcripts can provide a novel tier of gene regulation through generation of endogenous siRNAs or miRNA-binding sites. Characterization of pseudogene expression, however, has remained confined to anecdotal observations due to analytical challenges posed by the extremely close sequence similarity with their counterpart coding genes. Here, we describe a systematic analysis of pseudogene "transcription" from an RNA-Seq resource of 293 samples, representing 13 cancer and normal tissue types, and observe a surprisingly prevalent, genome-wide expression of pseudogenes that could be categorized as ubiquitously expressed or lineage and/or cancer specific. Further, we explore disease subtype specificity and functions of selected expressed pseudogenes. Taken together, we provide evidence that transcribed pseudogenes are a significant contributor to the transcriptional landscape of cells and are positioned to play significant roles in cellular differentiation and cancer progression, especially in light of the recently described ceRNA networks. Our work provides a transcriptome resource that enables high-throughput analyses of pseudogene expression.
Publication
Journal: Cancer research
May/7/2014
Abstract
Impairment of double-stranded DNA break (DSB) repair is essential to many cancers. However, although mutations in DSB repair proteins are common in hereditary cancers, mechanisms of impaired DSB repair in sporadic cancers remain incompletely understood. Here, we describe the first role for a long noncoding RNA (lncRNA) in DSB repair in prostate cancer. We identify PCAT-1, a prostate cancer outlier lncRNA, which regulates cell response to genotoxic stress. PCAT-1 expression produces a functional deficiency in homologous recombination through its repression of the BRCA2 tumor suppressor, which, in turn, imparts a high sensitivity to small-molecule inhibitors of PARP1. These effects reflected a posttranscriptional repression of the BRCA2 3'UTR by PCAT-1. Our observations thus offer a novel mechanism of "BRCAness" in sporadic cancers.
Publication
Journal: Journal of the National Cancer Institute
February/9/1998
Abstract
BACKGROUND
In virtually all patients with advanced prostate cancer, the disease metastasizes to bone and causes osteoblastic growth. However, the mechanisms that contribute to bone metastasis are poorly understood. It has been hypothesized that the bone provides a favorable growth environment for prostate cancer cells, which nonselectively seed the bone marrow from the bloodstream. Alternatively, prostate cancer cells may preferentially bind to bone marrow endothelial cells. We developed an in vitro model of bone endothelium and tested the hypothesis that prostate cancer cells adhere preferentially to bone marrow endothelial cells.
METHODS
We isolated and characterized a human bone marrow endothelial (HBME-1) cell line. Cells were transfected with the simian virus 40 large T antigen for immortalization. Cell surface receptors were characterized by immunohistochemistry and flow cytometry. The adhesion of cancer cells to HBME-1 and to endothelial cell lines from other organs was tested in an in vitro binding assay as were inhibitors of adhesion.
RESULTS
The immortalized HBME-1 cell line demonstrated many properties characteristic of endothelial cells, including positive staining for von Willibrand factor and rapid formation of tubule structures when exposed to extracellular matrices. In an in vitro assay, prostate cancer cells adhered preferentially to human bone marrow endothelium when compared with endothelium derived from other sources. Preferential adhesion was blocked, in part, by antibodies to galectin-3 and LFA-1.
CONCLUSIONS
These data suggest that the propensity of prostate cancer cells to establish themselves in bone is due, at least in part, to their preferential adhesion to human bone marrow endothelial cells.
Publication
Journal: The Journal of clinical investigation
October/22/2007
Abstract
Since the effectiveness of androgen deprivation for treatment of advanced prostate cancer was first demonstrated, prevention strategies and medical therapies for prostate cancer have been based on understanding the biologic underpinnings of the disease. Prostate cancer treatment is one of the best examples of a systematic therapeutic approach to target not only the cancer cells themselves, but the microenvironment in which they are proliferating. As the population ages and prostate cancer prevalence increases, challenges remain in the diagnosis of clinically relevant prostate cancer as well as the management of the metastatic and androgen-independent metastatic disease states.
Publication
Journal: Human genetics
February/27/2013
Abstract
Prostate cancer has a strong familial component but uncovering the molecular basis for inherited susceptibility for this disease has been challenging. Recently, a rare, recurrent mutation (G84E) in HOXB13 was reported to be associated with prostate cancer risk. Confirmation and characterization of this finding is necessary to potentially translate this information to the clinic. To examine this finding in a large international sample of prostate cancer families, we genotyped this mutation and 14 other SNPs in or flanking HOXB13 in 2,443 prostate cancer families recruited by the International Consortium for Prostate Cancer Genetics (ICPCG). At least one mutation carrier was found in 112 prostate cancer families (4.6 %), all of European descent. Within carrier families, the G84E mutation was more common in men with a diagnosis of prostate cancer (194 of 382, 51 %) than those without (42 of 137, 30 %), P = 9.9 × 10(-8) [odds ratio 4.42 (95 % confidence interval 2.56-7.64)]. A family-based association test found G84E to be significantly over-transmitted from parents to affected offspring (P = 6.5 × 10(-6)). Analysis of markers flanking the G84E mutation indicates that it resides in the same haplotype in 95 % of carriers, consistent with a founder effect. Clinical characteristics of cancers in mutation carriers included features of high-risk disease. These findings demonstrate that the HOXB13 G84E mutation is present in ~5 % of prostate cancer families, predominantly of European descent, and confirm its association with prostate cancer risk. While future studies are needed to more fully define the clinical utility of this observation, this allele and others like it could form the basis for early, targeted screening of men at elevated risk for this common, clinically heterogeneous cancer.
Publication
Journal: Cancer research
October/29/2007
Abstract
Integrative analysis of genomic aberrations in the context of trancriptomic alterations will lead to a more comprehensive perspective on prostate cancer progression. Genome-wide copy number changes were monitored using array comparative genomic hybridization of laser-capture microdissected prostate cancer samples spanning stages of prostate cancer progression, including precursor lesions, clinically localized disease, and metastatic disease. A total of 62 specific cell populations from 38 patients were profiled. Minimal common regions (MCR) of alterations were defined for each sample type, and metastatic samples displayed the most number of alterations. Clinically localized prostate cancer samples with high Gleason grade resembled metastatic samples with respect to the size of altered regions and number of affected genes. A total of 9 out of 13 MCRs in the putative precursor lesion, high-grade prostatic intraepithelial neoplasia (PIN), showed an overlap with prostate cancer cases (amplifications in 3q29, 5q31.3-q32, 6q27, and 8q24.3 and deletions in 6q22.31, 16p12.2, 17q21.2, and 17q21.31), whereas postatrophic hyperplasia (PAH) did not exhibit this overlap. Interestingly, prostate cancers that do not overexpress ETS family members (i.e., gene fusion-negative prostate cancers) harbor differential aberrations in 1q23, 6q16, 6q21, 10q23, and 10q24. Integrative analysis with matched mRNA profiles identified genetic alterations in several proposed candidate genes implicated in prostate cancer progression.
Publication
Journal: Neoplasia (New York, N.Y.)
April/1/2012
Abstract
The research community at large is expending considerable resources to sequence the coding region of the genomes of tumors and other human diseases using targeted exome capture (i.e., "whole exome sequencing"). The primary goal of targeted exome sequencing is to identify nonsynonymous mutations that potentially have functional consequences. Here, we demonstrate that whole-exome sequencing data can also be analyzed for comprehensively monitoring somatic copy number alterations (CNAs) by benchmarking the technique against conventional array CGH. A series of 17 matched tumor and normal tissues from patients with metastatic castrate-resistant prostate cancer was used for this assessment. We show that targeted exome sequencing reliably identifies CNAs that are common in advanced prostate cancer, such as androgen receptor (AR) gain and PTEN loss. Taken together, these data suggest that targeted exome sequencing data can be effectively leveraged for the detection of somatic CNAs in cancer.
Publication
Journal: Molecular & cellular proteomics : MCP
April/21/2010
Abstract
Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of biomarkers of cancer invasion and disease aggressiveness. Although alterations in gene expression have been extensively quantified during neoplastic progression, complementary analyses of proteomic changes have been limited. Here we interrogate the proteomic alterations in a cohort of 15 prostate-derived tissues that included five each from adjacent benign prostate, clinically localized prostate cancer, and metastatic disease from distant sites. The experimental strategy couples isobaric tags for relative and absolute quantitation with multidimensional liquid phase peptide fractionation followed by tandem mass spectrometry. Over 1000 proteins were quantified across the specimens and delineated into clinically localized and metastatic prostate cancer-specific signatures. Included in these class-specific profiles were both proteins that were known to be dysregulated during prostate cancer progression and new ones defined by this study. Enrichment analysis of the prostate cancer-specific proteomic signature, to gain insight into the functional consequences of these alterations, revealed involvement of miR-128-a/b regulation during prostate cancer progression. This finding was validated using real time PCR analysis for microRNA transcript levels in an independent set of 15 clinical specimens. miR-128 levels were elevated in benign prostate epithelial cell lines compared with invasive prostate cancer cells. Knockdown of miR-128 induced invasion in benign prostate epithelial cells, whereas its overexpression attenuated invasion in prostate cancer cells. Taken together, our profiles of the proteomic alterations of prostate cancer progression revealed miR-128 as a potentially important negative regulator of prostate cancer cell invasion.
Publication
Journal: FASEB journal : official publication of the Federation of American Societies for Experimental Biology
September/20/2005
Abstract
Testosterone production surges during puberty and orchestrates massive growth and reorganization of the prostate gland, and this glandular architecture is maintained thereafter throughout adulthood. Benign prostatic hyperplasia (BPH) and prostate adenocarcinoma (PCA) are common diseases in adulthood that do not develop in the absence of androgens. Our objective was to gain insight into gene expression changes of the prostate gland at puberty, a crucial juncture in prostate development that is androgen dependent. Understanding the role played by androgens in normal prostate development may provide greater insight into androgen involvement in prostatic diseases. Benign prostate tissues obtained from pubertal and adult age group cadaveric organ donors were harvested and profiled using 20,000 element cDNA microarrays. Statistical analysis of the microarray data identified 375 genes that were differentially expressed in pubertal prostates relative to adult prostates including genes such as Nkx3.1, TMEPAI, TGFBR3, FASN, ANKH, TGFBR2, FAAH, S100P, HoxB13, fibronectin, and TSC2 among others. Comparisons of pubertal and BPH expression profiles revealed a subset of genes that shared the expression pattern between the two groups. In addition, we observed that several genes from this list were previously demonstrated to be regulated by androgen and hence could also be potential in vivo targets of androgen action in the pubertal human prostate. Promoter searches revealed the presence of androgen response elements in a cohort of genes including tumor necrosis factor-alpha induced adipose related protein, which was found to be induced by androgen. In summary, this is the first report that provides a comprehensive view of the molecular events that occur during puberty in the human prostate and provides a cohort of genes that could be potential in vivo targets of androgenic action during puberty.
Publication
Journal: The American journal of pathology
September/26/2002
Abstract
alpha-Methylacyl-CoA racemase (AMACR) has previously been shown to be a highly sensitive marker for colorectal and clinically localized prostate cancer (PCa). However, AMACR expression was down-regulated at the transcript and protein level in hormone-refractory metastatic PCa, suggesting a hormone-dependent expression of AMACR. To further explore the hypothesis that AMACR is hormone regulated and plays a role in PCa progression AMACR protein expression was characterized in a broad range of PCa samples treated with variable amounts and lengths of exogenous anti-androgens. Analysis included standard slides and high-density tissue microarrays. AMACR protein expression was significantly increased in localized hormone-naive PCa as compared to benign (P < 0.001). Mean AMACR expression was lower in tissue samples from patients who had received neoadjuvant hormone treatment but still higher compared to hormone-refractory metastases. The hormone-sensitive tumor cell line, LNCaP, demonstrated stronger AMACR expression by Western blot analysis than the poorly differentiated cell lines DU-145 and PC-3. AMACR protein expression in cells after exposure to anti-androgen treatment was unchanged, whereas prostate-specific antigen, known to be androgen-regulated, demonstrated decreased protein expression. Surprisingly, this data suggests that AMACR expression is not regulated by androgens. Examination of colorectal cancer, which is not hormone regulated, demonstrated high levels of AMACR expression in well to moderately differentiated tumors and weak expression in anaplastic colorectal cancers. Taken together, these data suggest that AMACR expression is not hormone-dependent but may in fact be a marker of tumor differentiation.
Publication
Journal: The Prostate
October/5/2006
Abstract
BACKGROUND
The role of the epidermal growth factor receptor (ErbB1) in the progression of prostate cancer is incompletely understood.
METHODS
Tissue microarrays from hormone-naive and advanced androgen-independent tumors were used to investigate the role of ErbB1 in prostate cancer progression.
RESULTS
ErbB1 expression in tumor tissues was strongly associated with hormone-refractory status (odds ratio = 6.67, 95% CI = (2.6, 17.4), P = 0.0001). However, ErbB1 overexpression was not a statistically significant covariate in a multivariate proportional hazards model for biochemical failure of hormone-naïve prostate cancer. Moreover, ErbB1 overexpression was not associated with tumor differentiation (P = 0.44), positive margins (P = 0.53), seminal vesicle invasion (P = 0.69), extraprostatic extension (P = 0.10), or preoperative PSA (P = 0.18) in the hormone-naïve group.
CONCLUSIONS
These findings are consistent with a model in which ErbB1 expression increases during the development of the androgen-independent state, and suggest that drugs targeted toward ErbB signaling could be of therapeutic relevance in the management of advanced prostatic carcinoma.
Publication
Journal: Neoplasia (New York, N.Y.)
November/25/2013
Abstract
Metabolomic profiling of prostate cancer (PCa) progression identified markedly elevated levels of sarcosine (N-methyl glycine) in metastatic PCa and modest but significant elevation of the metabolite in PCa urine. Here, we examine the role of key enzymes associated with sarcosine metabolism in PCa progression. Consistent with our earlier report, sarcosine levels were significantly elevated in PCa urine sediments compared to controls, with a modest area under the receiver operating characteristic curve of 0.71. In addition, the expression of sarcosine biosynthetic enzyme, glycine N-methyltransferase (GNMT), was elevated in PCa tissues, while sarcosine dehydrogenase (SARDH) and pipecolic acid oxidase (PIPOX), which metabolize sarcosine, were reduced in prostate tumors. Consistent with this, GNMT promoted the oncogenic potential of prostate cells by facilitating sarcosine production, while SARDH and PIPOX reduced the oncogenic potential of prostate cells by metabolizing sarcosine. Accordingly, addition of sarcosine, but not glycine or alanine, induced invasion and intravasation in an in vivo PCa model. In contrast, GNMT knockdown or SARDH overexpression in PCa xenografts inhibited tumor growth. Taken together, these studies substantiate the role of sarcosine in PCa progression.
Publication
Journal: Cancer research
May/22/2007
Abstract
Prostate cancer ranks as the most common lethal malignancy diagnosed and the second leading cause of cancer mortality in American men. Although high response rates are achieved using androgen blockade as first-line therapy, most men progress toward hormone-refractory prostate cancer. Systemic chemotherapies have been shown to improve clinical outcome in hormone refractory prostate cancer patients; however, they are not curative. Due to the high incidence of bone involvement in hormone-refractory prostate cancer, assessment of treatment response in metastatic prostate cancer to the bone remains a major clinical need. In this current study, we investigated the feasibility of using the functional diffusion map (fDM) as an imaging biomarker for assessing early treatment response in a preclinical model of metastatic prostate cancer. The fDM biomarker requires a pretreatment and midtreatment magnetic resonance imaging diffusion map, which is used to quantify spatially distinct therapeutic-induced changes in the Brownian motion (or diffusion) of water within tumor tissue. Because water within tumor cells is in a restricted environment relative to extracellular water, loss of cell membrane integrity and cellular density during therapy will be detected by fDM as an increase in diffusion. Regions of significantly increased diffusion values were detected early using fDM in docetaxel-treated versus untreated metastatic prostate bone tumors at 7 days post treatment initiation (P < 0.05), indicating loss of tumor cell viability. Validation of fDM results was accomplished by histologic analysis of excised tissue. Results from this study show the capability of fDM as a biomarker for detection of bone cancer treatment efficacy, thus warranting clinical evaluation.
Publication
Journal: Lab on a chip
May/13/2012
Abstract
External forces are increasingly recognized as major regulators of cellular structure and function, yet the underlying mechanism by which cells sense forces and transduce them into intracellular biochemical signals and behavioral responses ('mechanotransduction') is largely undetermined. To aid in the mechanistic study of mechanotransduction, herein we devised a cell stretching device that allowed for quantitative control and real-time measurement of mechanical stimuli and cellular biomechanical responses. Our strategy involved a microfabricated array of silicone elastomeric microposts integrated onto a stretchable elastomeric membrane. Using a computer-controlled vacuum, this micropost array membrane (mPAM) was activated to apply equibiaxial cell stretching forces to adherent cells attached to the microposts. Using the mPAM, we studied the live-cell subcellular dynamic responses of contractile forces in vascular smooth muscle cells (VSMCs) to a sustained static equibiaxial cell stretch. Our data showed that in response to a sustained cell stretch, VSMCs regulated their cytoskeletal (CSK) contractility in a biphasic manner: they first acutely enhanced their contraction to resist rapid cell deformation ('stiffening') before they allowed slow adaptive inelastic CSK reorganization to release their contractility ('softening'). The contractile response across entire single VSMCs was spatially inhomogeneous and force-dependent. Our mPAM device and live-cell subcellular contractile measurements will help elucidate the mechanotransductive system in VSMCs and thus contribute to our understanding of pressure-induced vascular disease processes.
load more...