Superior molecular vaccine linking the translocation domain of a bacterial toxin to an antigen
Citations
All
Publications
(117)
Publication
Journal: Science (New York, N.Y.)
July/21/2009
Abstract
Caloric restriction (CR), without malnutrition, delays aging and extends life span in diverse species; however, its effect on resistance to illness and mortality in primates has not been clearly established. We report findings of a 20-year longitudinal adult-onset CR study in rhesus monkeys aimed at filling this critical gap in aging research. In a population of rhesus macaques maintained at the Wisconsin National Primate Research Center, moderate CR lowered the incidence of aging-related deaths. At the time point reported, 50% of control fed animals survived as compared with 80% of the CR animals. Furthermore, CR delayed the onset of age-associated pathologies. Specifically, CR reduced the incidence of diabetes, cancer, cardiovascular disease, and brain atrophy. These data demonstrate that CR slows aging in a primate species.
Publication
Journal: Nature methods
May/23/2005
Abstract
Human embryonic stem cells (hESCs) are routinely cultured on fibroblast feeder layers or in fibroblast-conditioned medium (CM). Bone morphogenetic proteins (BMPs) have previously been shown to induce hESC differentiation, in apparent contrast to mouse embryonic stem (ES) cells, in which BMP4 synergizes with leukemia inhibitory factor (LIF) to maintain self-renewal. Here we demonstrate that hESCs cultured in unconditioned medium (UM) are subjected to high levels of BMP signaling activity, which is reduced in CM. The BMP antagonist noggin synergizes with basic fibroblast growth factor (bFGF) to repress BMP signaling and sustain undifferentiated proliferation of hESCs in the absence of fibroblasts or CM. These findings suggest a basic difference in the self-renewal mechanism between mouse and human ES cells and simplify the culture of hESCs.
Publication
Journal: Nature communications
September/21/2014
Abstract
Caloric restriction (CR) without malnutrition increases longevity and delays the onset of age-associated disorders in short-lived species, from unicellular organisms to laboratory mice and rats. The value of CR as a tool to understand human ageing relies on translatability of CR's effects in primates. Here we show that CR significantly improves age-related and all-cause survival in monkeys on a long-term ~30% restricted diet since young adulthood. These data contrast with observations in the 2012 NIA intramural study report, where a difference in survival was not detected between control-fed and CR monkeys. A comparison of body weight of control animals from both studies with each other, and against data collected in a multi-centred relational database of primate ageing, suggests that the NIA control monkeys were effectively undergoing CR. Our data indicate that the benefits of CR on ageing are conserved in primates.
Publication
Journal: Nature medicine
August/27/2003
Abstract
By the acute stage of HIV-1 infection, the immune system already faces daunting challenges. Research on mucosal barriers and the events immediately after heterosexual transmission that precede this acute stage could facilitate the development of effective microbicides and vaccines.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/11/2006
Abstract
The formation of social attachments is a critical component of human relationships. Infants begin to bond to their caregivers from the moment of birth, and these social bonds continue to provide regulatory emotional functions throughout adulthood. It is difficult to examine the interactions between social experience and the biological origins of these complex behaviors because children undergo both brain development and accumulate social experience at the same time. We had a rare opportunity to examine children who were reared in extremely aberrant social environments where they were deprived of the kind of care-giving typical for our species. The present experiment in nature provides insight into the role of early experience on the brain systems underlying the development of emotional behavior. These data indicate that the vasopressin and oxytocin neuropeptide systems, which are critical in the establishment of social bonds and the regulation of emotional behaviors, are affected by early social experience. The results of this experiment suggest a potential mechanism whose atypical function may explain the pervasive social and emotional difficulties observed in many children who have experienced aberrant care-giving. The present findings are consistent with the view that there is a critical role for early experience in the development of the brain systems underlying basic aspects of human social behavior.
Publication
Journal: Neuroendocrinology
September/23/1982
Abstract
The present study examines the function of several cytologically distinct suprachiasmatic structures in the regulation of ovulation and positive feedback effects of estrogen and progesterone on gonadotropin release in the rat. Small (0.6-0.8 mm dia.) electrolytic lesions were placed at four loci along the rostrocaudal extent of the suprachiasmatic region in regularly cycling female rats. Anovulatory persistent estrus occurred only when lesions were located either in the suprachiasmatic nucleus (SCN) or the medial preoptic nucleus (MPN), a small periventricular cell group lying immediately caudal to the organum vasculosum lamina terminalis (OVLT). Lesions restricted to the OVLT and adjacent ventral prechiasmatic region (VPC-L), or the anterior suprachiasmatic region (ASR) between the MPN and SCN resulted in irregular estrous cycles frequently marked by periods of prolonged diestrus. Following administration of 50 microgram estradiol benzoate (EB) a daily afternoon surge of gonadotropin was observed in control animals. This circadian release of gonadotropins was completely abolished by SCN, ASR and MPN lesions. EB-induced gonadotropin surges were also greatly attenuated by VPC-L lesions. Subsequent administration of 1.5 mg progesterone (P) induced large surges of luteinizing hormone and follicle-stimulating hormone in VPC-L and ASR lesioned animals as well as controls. P administration also elicited gonadotropin surges in SCN lesioned animals, although surges were markedly attenuated in magnitude compared to controls. Only lesions that destroyed the MPN and immediately adjacent periventricular tissue completely and invariably eliminated P-induced gonadotropin release. Thus, anovulatory-persistent estrus appears to be associated specifically with lesions that interfere with the-positive feedback effect of P (MPN and SCN lesions). Animals with lesions that block or attenuate EB effects without interfering with P sensitive neural substrates can maintain long-term spontaneous ovulation (VPC-L and ASR lesions). An hypothesis is advanced to account for the differential effect of MPN and SCN lesions on P-induced gonadotropin release.
Publication
Journal: Reviews in endocrine & metabolic disorders
January/6/2008
Abstract
The prenatal testosterone (T)-treated adult female rhesus monkey is one animal model of polycystic ovary syndrome (PCOS) in women, with early prenatal T excess programming a permanent PCOS-like phenotype characterized by luteinizing hormone (LH) hypersecretion from reduced hypothalamic sensitivity to steroid negative feedback and relative insulin excess from increased abdominal adiposity. These combined reproductive and metabolic abnormalities are associated with ovarian hyperandrogenism and follicular arrest in adulthood, as well as premature follicle differentiation and impaired embryo development during gonadotropin therapy for in vitro fertilization (IVF). A second animal model for PCOS, the prenatal T-treated sheep also is characterized by LH hypersecretion from reduced hypothalamic sensitivity to steroid negative feedback, persistent follicles and insulin resistance, but also is associated with intrauterine growth retardation and compensatory growth after birth. The ability of prenatal T excess in both species to alter the developmental trajectory of multiple organ systems in utero provides evidence that the hormonal environment of intrauterine life programs target tissue differentiation, raising the possibility that T excess in human fetal development promotes PCOS in adulthood. Such a hypothesis must include data from clinical studies of PCOS women to clarify the homology between these PCOS-like animal models and PCOS per se in reproductive and metabolic function. Future studies should develop new clinical strategies that improve pregnancy outcome and minimize pregnancy loss in women with disorders of insulin action, including PCOS, obesity and diabetes mellitus as well as minimize transgenerational susceptibility to adult PCOS and its metabolic derangements in male close relatives.
Publication
Journal: The Journal of clinical endocrinology and metabolism
March/14/2007
Abstract
BACKGROUND
Polycystic ovary syndrome (PCOS), the most common cause of anovulatory infertility, is characterized by increased ovarian androgen production and arrested follicle development and is frequently associated with insulin resistance. These PCOS phenotypes are associated with exaggerated ovarian responsiveness to FSH and increased pregnancy loss.
OBJECTIVE
The objective of this study was to examine whether the perturbations in follicle growth and the intrafollicular environment affect gene expression and ultimately development of the PCOS oocyte.
METHODS
Oocyte cDNA was subjected to microarray and PCR analysis.
METHODS
This study was conducted at a university laboratory.
METHODS
The study comprised 10 normal ovulatory women and nine women with PCOS.
METHODS
The intervention was GnRH analog/recombinant human FSH therapy for in vitro fertilization.
METHODS
The main outcome measure was mRNA abundance of oocyte-expressed genes.
RESULTS
Cluster analysis revealed differences in global gene expression profiles between normal and PCOS oocytes. Of the 8123 transcripts expressed in the oocytes, 374 genes showed significant differences in mRNA abundance in PCOS oocytes. Annotation of the data demonstrated that a subset of these genes was associated with chromosome alignment and segregation during mitosis and/or meiosis. Furthermore, 68 of the differentially expressed genes contained putative androgen receptor and/or peroxisome proliferating receptor gamma binding sites.
CONCLUSIONS
These analyses demonstrated that normal and PCOS oocytes that are morphologically indistinguishable and of high quality exhibit different gene expression profiles. Promoter analysis suggests that androgens and other activators of nuclear receptors may play a role in differential gene expression in the PCOS oocyte. Likewise, annotation of the differentially expressed genes suggests that defects in meiosis or early embryonic development may contribute to reduced developmental competency of PCOS oocytes.
Publication
Journal: Journal of virology
November/26/2007
Abstract
Effective, vaccine-induced CD8+ T-cell responses should recognize infected cells early enough to prevent production of progeny virions. We have recently shown that Gag-specific CD8+ T cells recognize simian immunodeficiency virus-infected cells at 2 h postinfection, whereas Env-specific CD8+ T cells do not recognize infected cells until much later in infection. However, it remains unknown when other proteins present in the viral particle are presented to CD8+ T cells after infection. To address this issue, we explored CD8+ T-cell recognition of epitopes derived from two other relatively large virion proteins, Pol and Nef. Surprisingly, infected cells efficiently presented CD8+ T-cell epitopes from virion-derived Pol proteins within 2 h of infection. In contrast, Nef-specific CD8+ T cells did not recognize infected cells until 12 h postinfection. Additionally, we show that SIVmac239 Nef downregulated surface major histocompatibility complex class I (MHC-I) molecules beginning at 12 h postinfection, concomitant with presentation of Nef-derived CD8+ T-cell epitopes. Finally, Pol-specific CD8+ T cells eliminated infected cells as early as 6 h postinfection, well before MHC-I downregulation, suggesting a previously underappreciated antiviral role for Pol-specific CD8+ T cells.
Publication
Journal: Journal of virology
November/21/2010
Abstract
Rapid evolution and high intrahost sequence diversity are hallmarks of human and simian immunodeficiency virus (HIV/SIV) infection. Minor viral variants have important implications for drug resistance, receptor tropism, and immune evasion. Here, we used ultradeep pyrosequencing to sequence complete HIV/SIV genomes, detecting variants present at a frequency as low as 1%. This approach provides a more complete characterization of the viral population than is possible with conventional methods, revealing low-level drug resistance and detecting previously hidden changes in the viral population. While this work applies pyrosequencing to immunodeficiency viruses, this approach could be applied to virtually any viral pathogen.
Publication
Journal: Journal of virology
January/22/2006
Abstract
Epitope-specific CD8+ T lymphocytes may play an important role in controlling human immunodeficiency virus (HIV)/simian immunodeficiency virus replication. Unfortunately, standard cellular assays do not measure the antiviral efficacy (the ability to suppress virus replication) of CD8+ T lymphocytes. Certain epitope-specific CD8+ T lymphocytes may be better than others at suppressing viral replication. We compared the antiviral efficacy of two immunodominant CD8+ T lymphocyte responses--Tat(28-35)SL8 and Gag(181-189)CM9--by using a functional in vitro assay. Viral suppression by Tat-specific CD8+ T lymphocytes was consistently greater than that of Gag-specific CD8+ T lymphocytes. Such differences in antigen-specific CD8+-T-lymphocyte efficacy may be important for selecting CD8+ T lymphocyte epitopes for inclusion in future HIV vaccines.
Publication
Journal: Endocrinology
March/1/1993
Abstract
In a previous study we found that ovariectomy resulted in an increase in both LHRH release and LH release in pubertal monkeys but not in prepubertal monkeys. To determine whether this castration-induced LHRH increase is due to the removal of estrogen, in the present study, the effects of estradiol benzoate (EB, 30 micrograms/kg body wt) on in vivo LHRH release were examined using a push-pull perfusion method in prepubertal (age 15-19 months, n = 5), early pubertal (24-29 months, n = 5), and midpubertal (36-48 months, n = 5) female rhesus monkeys that were ovariectomized 3 to 5 months earlier. LHRH in 10-min perfusate fractions from the stalk-median eminence was measured from -6 to +24 h after EB injection. Circulating LH levels were also monitored over the same period at various intervals. EB decreased LH levels in early pubertal and midpubertal monkeys, whereas it did not cause any significant effects on LH release in the prepubertal monkey. EB also resulted in suppression of LHRH release in both early and midpubertal monkeys; mean LHRH release before EB in the early and midpubertal groups was 6.6 +/- 0.6 and 7.0 +/- 0.6 pg/ml.10 min, respectively. EB decreased mean LHRH release beginning 3 h after EB with the nadir occurring at 18-21 h after EB (1.0 +/- 0.2 pg/ml.10 min) in early pubertal monkeys and 21-24 h after EB (1.2 +/- 0.1 pg/ml.10 min) in midpubertal monkeys. Decrease of mean LHRH release was due to a decrease in LHRH pulse amplitude and basal release but not pulse frequency. Oil injection alone (control) failed to suppress LHRH and LH release. In contrast to the results in pubertal monkeys, mean LHRH release in prepubertal monkeys was not altered by EB (before EB, 1.1 +/- 0.2 pg/ml.10 min; 18-21 h after EB, 1.5 +/- 0.3 pg/ml.10 min). These results suggest that the LHRH neurosecretory system in pubertal monkeys is responsive to the negative feedback effects of estrogen. However, the fact that estradiol failed to suppress LHRH release in prepubertal monkeys indicates that the LHRH neurosecretory system and/or its regulatory systems are not sensitive to estradiol before the onset of puberty. These findings are consistent with the hypothesis that the increase in pulsatile LHRH release at the onset of puberty is not dependent on changes in ovarian steroid feedback mechanisms.
Publication
Journal: Hormones and behavior
February/5/2007
Abstract
Parental care has been demonstrated to have important effects on offspring behavioral development. California mice (Peromyscus californicus) are biparental, and correlational evidence suggests that pup retrieving by fathers has important effects on the development of aggressive behavior and extra-hypothalamic vasopressin systems. We tested whether retrievals affected these systems by manipulating paternal retrieval behavior between day 15 and 21 postpartum. Licking and grooming behavior affect behavioral development in rats, so we also experimentally reduced huddling and grooming behavior by castrating a subset of fathers. Experimentally increasing the frequency of paternal pup retrieving behavior decreased attack latency in resident-intruder in both male and female adult offspring, whereas experimental reduction of huddling and grooming had no effect. In a separate group of male offspring, we examined vasopressin immunoreactivity (AVP-ir) in two regions of the posterior bed nucleus of the stria terminalis (BNST): the dorsal fiber tracts (dBNST) and the ventral cell body-containing region (vBNST). Experimentally increasing retrievals led to an apparent shift in AVP-ir distribution. Specifically, offspring from the high retrieval group had more AVP-ir than offspring from the sham retrieval group in the dBNST, whereas the opposite was observed in the vBNST. Experimental reduction of paternal grooming was associated with increased AVP-ir in the paraventricular nucleus and also increased corticosterone and progesterone, similar to observed effects of maternal grooming on HPA function. This study provides further evidence that paternal behavior influences the development of aggression and associated neural substrates.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/14/2008
Abstract
Anecdotal evidence suggests that birds have smaller intestines than mammals. In the present analysis, we show that small birds and bats have significantly shorter small intestines and less small intestine nominal (smooth bore tube) surface area than similarly sized nonflying mammals. The corresponding >50% reduction in intestinal volume and hence mass of digesta carried is advantageous because the energetic costs of flight increase with load carried. But, a central dilemma is how birds and bats satisfy relatively high energy needs with less absorptive surface area. Here, we further show that an enhanced paracellular pathway for intestinal absorption of water-soluble nutrients such as glucose and amino acids may compensate for reduced small intestines in volant vertebrates. The evidence is that l-rhamnose and other similarly sized, metabolically inert, nonactively transported monosaccharides are absorbed significantly more in small birds and bats than in nonflying mammals. To broaden our comparison and test the veracity of our finding we surveyed the literature for other similar studies of paracellular absorption. The patterns found in our focal species held up when we included other species surveyed in our analysis. Significantly greater amplification of digestive surface area by villi in small birds, also uncovered by our analysis, may provide one mechanistic explanation for the observation of higher paracellular absorption relative to nonflying mammals. It appears that reduced intestinal size and relatively enhanced intestinal paracellular absorption can be added to the suite of adaptations that have evolved in actively flying vertebrates.
Publication
Journal: Journal of virology
June/10/2012
Abstract
Hepatitis C virus (HCV) is the leading cause of liver disease worldwide. In this study, we analyzed four treatment-naïve patients infected with subtype 1a and performed Roche/454 pyrosequencing across the coding region. We report the presence of low-level drug resistance mutations that would most likely have been missed using conventional sequencing methods. The approach described here is broadly applicable to studies of viral diversity and could help to improve the efficacy of direct-acting antiviral agents (DAA) in the treatment of HCV-infected patients.
Publication
Journal: Nature
November/21/1985
Abstract
Nerve growth factor (NGF) is essential for the survival and differentiation of a number of neural crest derivatives, including sympathetic and sensory neurones. While early studies suggested that NGF might also have a mitogenic effect on these neurones, subsequent work has favoured the interpretation that NGF promotes cell survival or differentiation rather than proliferation. We have addressed the issue of a mitogenic effect of NGF using adrenal chromaffin cells, which are endocrine cells derived from the neural crest, and are closely related to sympathetic neurones. Adrenal chromaffin cells respond to NGF in vitro by expressing neuronal traits. We now report that NGF elicits a mitotic response in cultured chromaffin cells from young rats, and that this response is blocked by an antiserum to 2.5S NGF. The chromaffin cells that divided in response to NGF can subsequently become neuronal in the continued presence of NGF.
Publication
Journal: Journal of virology
July/5/2007
Abstract
Current assays of CD8+ T-lymphocyte function measure cytokine production rather than the ability of these lymphocytes to suppress viral replication. Here we show that CD8+ T-cell clones recognizing the same epitope vary enormously in the ability to suppress simian immunodeficiency virus SIVmac239 replication in an in vitro suppression assay. However, all Nef(165-173)IW9- and Vif(66-73)HW8-specific clones from elite controllers effectively suppressed SIV replication. Interestingly, in vitro suppression efficacy was not always associated with the ability to produce gamma interferon, tumor necrosis factor alpha, or interleukin-2.
Publication
Journal: Reproductive toxicology (Elmsford, N.Y.)
September/19/2007
Abstract
OBJECTIVE
To determine whether pioglitazone will improve menstrual cyclicity in a fetal programming model for polycystic ovary syndrome.
METHODS
Eight prenatally androgenized (PA) and 5 control female rhesus monkeys of similar age, body weight and body mass index received an oral placebo daily for 6-7 months followed, after at least 90 days, by daily oral dosing with pioglitazone (3mg/kg) for an additional 6-7 months. Blood was sampled thrice weekly to monitor ovulatory function, and a variety of endocrine challenges were performed to quantify changes in ovarian, gonadotropin and glucoregulatory function.
UNASSIGNED
Pioglitazone normalized menstrual cycles in 5 out of 8 (62%) PA females (pioglitazone responsive; Pio(RESP)). Pioglitazone increased serum 17alpha-hydroxyprogesterone responses to an hCG injection in Pio(RESP) PA females, while diminishing serum progesterone, and increasing DHEA and estradiol responses to hCG in Pio(RESP) PA and all normal females.
CONCLUSIONS
Insulin resistance plays a mechanistic role in maintaining anovulation in a majority of PA female monkeys.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/7/2013
Abstract
Children with anxious temperament (AT) are particularly sensitive to new social experiences and have increased risk for developing anxiety and depression. The young rhesus monkey is optimal for studying the origin of human AT because it shares with humans the genetic, neural, and phenotypic underpinnings of complex social and emotional functioning. In vivo imaging in young monkeys demonstrated that central nucleus of the amygdala (Ce) metabolism is relatively stable across development and predicts AT. Transcriptome-wide gene expression, which reflects combined genetic and environmental influences, was assessed within the Ce. Results support a maladaptive neurodevelopmental hypothesis linking decreased amygdala neuroplasticity to early-life dispositional anxiety. For example, high AT individuals had decreased mRNA expression of neurotrophic tyrosine kinase, receptor, type 3 (NTRK3). Moreover, variation in Ce NTRK3 expression was inversely correlated with Ce metabolism and other AT-substrates. These data suggest that altered amygdala neuroplasticity may play a role the early dispositional risk to develop anxiety and depression.
Publication
Journal: Journal of virology
February/17/1998
Abstract
Simian-human immunodeficiency virus 89.6PD (SHIV89.6PD) was pathogenic after intrarectal inoculation of rhesus macaques. Infection was achieved with a minimum of 2,500 tissue culture infectious doses of cell-free virus stock, and there was no evidence for transient viremia in animals receiving subinfectious doses by the intrarectal route. Some animals experienced rapid progression of disease characterized by loss of greater than 90% of circulating CD4+ T cells, sustained decreases in CD20+ B cells, failure to elicit virus-binding antibodies in plasma, and high levels of antigenemia. Slower-progressing animals had moderate but varying losses of CD4+ T cells; showed increases in circulating CD20+ B cells; mounted vigorous responses to antibodies in plasma, including neutralizing antibodies; and had low or undetectable levels of antigenemia. Rapid progression led to death within 30 weeks after intrarectal inoculation. Plasma antigenemia at 2 weeks after inoculation (P < or = 0.002), B- and T-cell losses (P < or = 0.013), and failure to seroconvert (P < or = 0.005) were correlated statistically with rapid progression. Correlations were evident by 2 to 4 weeks after intrarectal SHIV inoculation, indicating that early events in the host-pathogen interaction determined the clinical outcome.
Publication
Journal: Journal of virology
October/30/2011
Abstract
The retroviral restriction factor TRIMCyp, derived from the TRIM5 gene, blocks replication at a postentry step. TRIMCyp has so far been found in four species of Asian macaques, Macaca fascicularis, M. mulatta, M. nemestrina, and M. leonina. M. fascicularis is commonly used as a model for AIDS research, but TRIMCyp has not been analyzed in detail in this species. We analyzed the prevalence of TRIMCyp in samples from Indonesia, Indochina, the Philippines, and Mauritius. We found that TRIMCyp is present at a higher frequency in Indonesian than in Indochinese M. fascicularis macaques and is also present in samples from the Philippines. TRIMCyp is absent in Mauritian M. fascicularis macaques. We then analyzed the restriction specificity of TRIMCyp derived from three animals of Indonesian origin. One allele, like the prototypic TRIMCyp alleles described for M. mulatta and M. nemestrina, restricts human immunodeficiency virus type 2 (HIV-2) and feline immunodeficiency virus (FIV) but not HIV-1. The others restrict HIV-1 and FIV but not HIV-2. Mutagenesis studies confirmed that polymorphisms at amino acid residues 369 and 446 in TRIMCyp (or residues 66 and 143 in the cyclophilin A [CypA] domain) confer restriction specificity. Additionally, we identified a polymorphism in the coiled-coil domain that appears to affect TRIMCyp expression or stability. Taken together, these data show that M. fascicularis has the most diverse array of TRIM5 restriction factors described for any primate species to date. These findings are relevant to our understanding of the evolution of retroviral restriction factors and the use of M. fascicularis models in AIDS research.
Publication
Journal: The Journal of clinical endocrinology and metabolism
January/9/2006
Abstract
BACKGROUND
Adrenal androgen excess is found in approximately 25-60% of women with polycystic ovary syndrome (PCOS), but the mechanisms underlying PCOS-related adrenal androgen excess are unclear.
OBJECTIVE
The objective of this study was to determine whether adrenal androgen excess is manifest in a nonhuman primate model for PCOS.
METHODS
Six prenatally androgenized (PA) and six control female rhesus monkeys of similar age, body weight, and body mass index were studied during d 2-6 of two menstrual cycles or anovulatory 30-d periods.
METHODS
Predexamethasone adrenal steroid levels were assessed in the first cycle (cycle 1). In a subsequent cycle (cycle 2), occurring one to three cycles after cycle 1, adrenal steroids were determined 14.5-16.0 h after an i.m. injection of 0.5 mg/kg dexamethasone (postdexamethasone levels) and after an i.v. injection of 50 microg ACTH-(1-39).
RESULTS
Both before and after dexamethasone, serum levels of dehydroepiandrosterone (DHEA) in PA females exceeded those in controls. After ACTH injection, PA females exhibited higher circulating levels of DHEA, androstenedione, and corticosterone but comparable levels of 17alpha-hydroxyprogesterone, cortisol, the sulfoconjugate of DHEA, and testosterone compared with controls.
CONCLUSIONS
Enhanced basal and ACTH-stimulated adrenal androgen levels in PA female monkeys may reflect up-regulation of 17,20 lyase activity in the adrenal zona reticularis, causing adrenal androgen excess comparable with that found in PCOS women with adrenal androgen excess. These findings open the possibility that PCOS adrenal hyperandrogenism may have its origins in fetal androgen excess reprogramming of adrenocortical function.
Publication
Journal: PloS one
August/19/2008
Abstract
BACKGROUND
Thus far, live attenuated SIV has been the most successful method for vaccinating macaques against pathogenic SIV challenge; however, it is not clear what mechanisms are responsible for this protection. Adoptive transfer studies in mice have been integral to understanding live attenuated vaccine protection in models like Friend virus. Previous adoptive transfers in primates have failed as transferred cells are typically cleared within hours after transfer.
RESULTS
Here we describe adoptive transfer studies in Mauritian origin cynomolgus macaques (MCM), a non-human primate model with limited MHC diversity. Cells transferred between unrelated MHC-matched macaques persist for at least fourteen days but are rejected within 36 hours in MHC-mismatched macaques. Cells trafficked from the blood to peripheral lymphoid tissues within 12 hours of transfer.
CONCLUSIONS
MHC-matched MCM provide the first viable primate model for adoptive transfer studies. Because macaques infected with SIV are the best model for HIV/AIDS pathogenesis, we can now directly study the correlates of protective immune responses to AIDS viruses. For example, plasma viral loads following pathogenic SIV challenge are reduced by several orders of magnitude in macaques previously immunized with attenuated SIV. Adoptive transfer of lymphocyte subpopulations from vaccinated donors into SIV-naïve animals may define the immune mechanisms responsible for protection and guide future vaccine development.
Publication
Journal: Experimental neurology
October/3/1985
Abstract
Synaptic density was quantitated in the entorhinal cortex and subiculum of rats at 5, 21, 34, and 95 postnatal days. These rats were offspring of mothers that had been subjected to four different concentrations of halothane during gestation and for 60 days after birth. The exposure conditions were control, intermittent halothane (25 +/- 5 ppm or 100 +/- 5 ppm, 8 h/day, 5 days/week) and continuous halothane (25 +/- 5 ppm, 24 h/day, 7 days/week). Synaptic density in rats exposed to halothane was significantly less than in control rats. Animals exposed intermittently to 25 +/- 5 ppm halothane had higher synaptic density than animals exposed continuously to 25 +/- 5 ppm halothane or intermittently to 100 +/- 5 ppm halothane. The latter two exposure conditions exerted similar effects. The lag in synaptic development was established at 5 days postnatal and remained the same throughout the first 95 postnatal days in both the entorhinal cortex and subiculum. Delayed synaptogenesis caused by halothane was indicated by the presence of growth cones in halothane-exposed rats to 34 days compared with 21 days in the control rats. The spontaneous alternation test indicated that the delayed synaptogenesis by halothane was sufficient to suppress behavioral development. Thus, the delay in the initial synaptic maturation caused by halothane exposure in utero may result in permanent morphologic and functional deficits of the brain.
load more...