Structural alterations of the EGF receptor gene in human tumors
Citations
All
Pubmeds
(30)
Pubmed
Journal: Molecular cancer therapeutics
January/11/2010
Abstract

Conventional therapies for glioblastoma multiforme (GBM) fail to target tumor cells exclusively, such that their efficacy is ultimately limited by nonspecific toxicity. Immunologic targeting of tumor-specific gene mutations, however, may allow more precise eradication of neoplastic cells. The epidermal growth factor receptor variant III (EGFRvIII) is a consistent and tumor-specific mutation widely expressed in GBMs and other neoplasms. The safety and immunogenicity of a dendritic cell (DC)-based vaccine targeting the EGFRvIII antigen was evaluated in this study. Adults with newly diagnosed GBM, who had undergone gross-total resection and standard conformal external beam radiotherapy, received three consecutive intradermal vaccinations with autologous mature DCs pulsed with an EGFRvIII-specific peptide conjugated to keyhole limpet hemocyanin. The dose of DCs was escalated in cohorts of three patients. Patients were monitored for toxicity, immune response, radiographic and clinical progression, and death. No allergic reactions or serious adverse events were seen. Adverse events were limited to grade 2 toxicities. The maximum feasible dose of antigen-pulsed mature DCs was reached at 5.7 x 10(7) +/- 2.9 x 10(7) SD without dose-limiting toxicity. EGFRvIII-specific immune responses were evident in most patients. The mean time from histologic diagnosis to vaccination was 3.6 +/- 0.6 SD months. Median time to progression from vaccination was 6.8 months [95% confidence interval (C.I.(95)), 2.5-8.8], and median survival time from vaccination was 18.7 months (C.I.(95), 14.5-25.6). Overall median survival from time of histologic diagnosis was 22.8 months (C.I.(95), 17.5-29). This study establishes the EGFRvIII mutation as a safe and immunogenic tumor-specific target for immunotherapy.

Pubmed
Journal: Neurosurgery
July/11/2007
Abstract

OBJECTIVE

Convection-enhanced delivery (CED) holds tremendous potential for drug delivery to the brain. However, little is known about the volume of distribution achieved within human brain tissue or how target anatomy and catheter positioning influence drug distribution. The primary objective of this study was to quantitatively describe the distribution of a high molecular weight agent by CED relative to target anatomy and catheter position in patients with malignant gliomas.

METHODS

Seven adult patients with recurrent malignant gliomas underwent intracerebral infusion of the tumor-targeted cytotoxin, cintredekin besudotox, concurrently with 123I-labeled human serum albumin. High-resolution single-photon emission computed tomographic images were obtained at 24 and 48 hours and were coregistered with magnetic resonance imaging scans. The distribution of 123I-labeled human serum albumin relative to target anatomy and catheter position was analyzed.

RESULTS

Intracerebral CED infusions were well-tolerated and some resulted in a broad distribution of 123I-labeled human serum albumin, but target anatomy and catheter positioning had a significant influence on infusate distribution even within non-contrast-enhancing areas of brain. Intratumoral infusions were anisotropic and resulted in limited coverage of the enhancing tumor area and adjacent peritumoral regions.

CONCLUSIONS

CED has the potential to deliver high molecular weight agents into tumor-infiltrated brain parenchyma with volumes of distribution that are clinically relevant. Target tissue anatomy and catheter position are critical parameters in optimizing drug delivery.

Pubmed
Journal: Cell reports
September/24/2014
Abstract

Stem cells reside in niches that regulate the balance between self-renewal and differentiation. The identity of a stem cell is linked with the ability to interact with its niche through adhesion mechanisms. To identify targets that disrupt cancer stem cell (CSC) adhesion, we performed a flow cytometry screen on patient-derived glioblastoma (GBM) cells and identified junctional adhesion molecule A (JAM-A) as a CSC adhesion mechanism essential for self-renewal and tumor growth. JAM-A was dispensable for normal neural stem/progenitor cell (NPC) function, and JAM-A expression was reduced in normal brain versus GBM. Targeting JAM-A compromised the self-renewal of CSCs. JAM-A expression negatively correlated to GBM patient prognosis. Our results demonstrate that GBM-targeting strategies can be identified through screening adhesion receptors and JAM-A represents a mechanism for niche-driven CSC maintenance.

Pubmed
Journal: Cancer
November/30/2005
Abstract

BACKGROUND

The authors determined the maximum tolerated dose (MTD) and dose-limiting toxicity (DLT) of irinotecan (CPT-11), a topoisomerase I inhibitor, when administered with temozolomide among patients with recurrent malignant glioma (MG).

METHODS

Patients with MG at any recurrence received temozolomide (TMZ) at a dose of 200 mg/m(2)/day on Days 1-5 plus CPT-11 administered as a 90-minute intravenous infusion during Weeks 1, 2, 4, and 5 of each 6-week cycle. Patients were stratified based on concurrent administration of CYP3A4-inducing anticonvulsants (enzyme-inducing antiepileptic drugs [EIAEDs]). The CPT-11 dose was escalated in successive cohorts of patients independently for each stratum.

RESULTS

CPT-11, at doses ranging from 40 mg/m(2) to 375 mg/m(2), was administered with TMZ to 107 patients. Ninety-one patients (85%) had recurrent glioblastoma multiforme (GBM) and 16 (15%) had recurrent anaplastic glioma. Sixty-eight patients (64%) were given EIAEDs. The MTD of CPT-11 for patients concurrently receiving and not receiving EIAEDs was 325 mg/m(2) and 125 mg/m(2), respectively. The DLTs were hematologic, gastrointestinal, and hepatic. Fifteen patients (14%) achieved either a radiographic complete (n = 5) or partial (n = 10) response across a wide range of CPT-11 dose levels. Patients with recurrent GBM who achieved radiographic response had a median time to disease progression of 54.9 weeks.

CONCLUSIONS

The current study built on preclinical observations designed to increase the clinical activity of topoisomerase I inhibitors. CPT-11, administered at full dose levels, was well tolerated in combination with TMZ. Furthermore, durable responses were observed in this recurrent population. Ongoing Phase II studies will evaluate the efficacy of this regimen and its application to other malignancies.

Pubmed
Journal: Journal of neurosurgery
March/22/1989
Abstract

Forty patients with recurrent gliomas were treated with monthly intra-arterial infusions of cisplatin. Of the 35 evaluable patients, 12 (34%) responded with computerized tomography (CT) evidence of a decrease in tumor size; in 14 (40%) the tumor stabilized on CT scans, and in nine (26%) the disease progressed. The median survival period was 35.0 weeks for the responders and 27.5 weeks for all 35 patients. The primary toxicities were renal (reversible alterations in creatinine clearance), otological (severe hearing loss in one patient), and likely neurotoxicity in one patient who had received bilateral infusions following contralateral tumor progression. The authors are now using this form of regional chemotherapy sequentially before and following radiotherapy in newly diagnosed cases.

Pubmed
Journal: Cancer research
November/25/2007
Abstract

Malignant gliomas are highly proliferative and angiogenic cancers resistant to conventional therapies. Although RAS and RAF mutations are uncommon in gliomas, RAS activity is increased in gliomas. Additionally, vascular endothelial growth factor and its cognate receptors are highly expressed in gliomas. We now report that AAL881, a novel low-molecular weight inhibitor of the kinase activities associated with B-RAF, C-RAF (RAF-1), and VEGF receptor-2 (VEGFR2), showed activity against glioma cell lines and xenografts. In culture, AAL881 inhibited the downstream effectors of RAF in a concentration-dependent manner, with inhibition of proliferation associated with a G(1) cell cycle arrest, induction of apoptosis, and decreased colony formation. AAL881 decreased the proliferation of bovine aortic endothelial cells as well as the tumor cell secretion of vascular endothelial growth factor and inhibited the invasion of glioma cells through an artificial extracellular matrix. Orally administered AAL881 was well tolerated with minimal weight loss in non-tumor-bearing mice. Established s.c. human malignant glioma xenografts grown in immunocompromised mice treated with a 10-day course of oral AAL881 exhibited growth delays relative to control tumors, frequently resulting in long-term complete regressions. AAL881 treatment extended the survival of immunocompromised mice bearing orthotopic glioma xenografts compared with placebo controls. The intraparenchymal portions of orthotopic AAL881-treated tumors underwent widespread necrosis consistent with vascular disruption compared with the subarachnoid elements. These effects are distinct from our prior experience with VEGFR2 inhibitors, suggesting that targeting RAF itself or in combination with VEGFR2 induces profound tumor responses in gliomas and may serve as a novel therapeutic approach in patients with malignant gliomas.

Pubmed
Journal: Journal of clinical neuroscience : official journal of the Neurosurgical Society of Australasia
August/20/2014
Abstract

Chimeric antigen receptors (CAR)-transduced T cells hold great promise in the treatment of malignant disease. Here, we demonstrate that intracerebral injection with a human, epidermal growth factor receptor variant III (EGFRvIII)-specific, third generation CAR successfully treats glioma in mice. Importantly, these results endorse clinical translation of this CAR in patients with EGFRvIII-expressing brain tumors.

Pubmed
Journal: BMC cancer
February/2/2011
Abstract

BACKGROUND

Glioblastoma multiforme (GBM) is refractory to conventional therapies. To overcome the problem of heterogeneity, more brain tumor markers are required for prognosis and targeted therapy. We have identified and validated a promising molecular therapeutic target that is expressed by GBM: human multidrug-resistance protein 3 (MRP3).

METHODS

We investigated MRP3 by genetic and immunohistochemical (IHC) analysis of human gliomas to determine the incidence, distribution, and localization of MRP3 antigens in GBM and their potential correlation with survival. To determine MRP3 mRNA transcript and protein expression levels, we performed quantitative RT-PCR, raising MRP3-specific antibodies, and IHC analysis with biopsies of newly diagnosed GBM patients. We used univariate and multivariate analyses to assess the correlation of RNA expression and IHC of MRP3 with patient survival, with and without adjustment for age, extent of resection, and KPS.

RESULTS

Real-time PCR results from 67 GBM biopsies indicated that 59/67 (88%) samples highly expressed MRP3 mRNA transcripts, in contrast with minimal expression in normal brain samples. Rabbit polyvalent and murine monoclonal antibodies generated against an extracellular span of MRP3 protein demonstrated reactivity with defined MRP3-expressing cell lines and GBM patient biopsies by Western blotting and FACS analyses, the latter establishing cell surface MRP3 protein expression. IHC evaluation of 46 GBM biopsy samples with anti-MRP3 IgG revealed MRP3 in a primarily membranous and cytoplasmic pattern in 42 (91%) of the 46 samples. Relative RNA expression was a strong predictor of survival for newly diagnosed GBM patients. Hazard of death for GBM patients with high levels of MRP3 RNA expression was 2.71 (95% CI: 1.54-4.80) times that of patients with low/moderate levels (p = 0.002).

CONCLUSIONS

Human GBMs overexpress MRP3 at both mRNA and protein levels, and elevated MRP3 mRNA levels in GBM biopsy samples correlated with a higher risk of death. These data suggest that the tumor-associated antigen MRP3 has potential use for prognosis and as a target for malignant glioma immunotherapy.

Pubmed
Journal: Molecular cancer therapeutics
February/8/2005
Abstract

The chemotherapeutic activity of 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU or carmustine) may be improved by the addition of O6-benzylguanine (O6-BG). The reaction of O6-BG with O6-alkylguanine-DNA alkyltransferase (AGT) prevents the repair of O6-chloroethyl lesions caused by BCNU. In clinics, the combination of O6-BG and BCNU is now being tested for the treatment of brain tumors. However, the effectiveness of this drug regimen may be limited by drug resistance acquired during treatment. To understand the possible mechanisms of resistance of brain tumor cells to the O6-BG/BCNU combination, we generated medulloblastoma cell lines (D283 MED, D341 MED, and Daoy) resistant to the combination of O6-BG and BCNU [O6-BG/BCNU resistant (OBR)]. DNA sequencing showed that all of the parent cell lines express wild-type AGTs, whereas every OBR cell line exhibited mutations that potentially affected the binding of O6-BG to the protein as evidenced previously by in vitro mutagenesis and structural studies of AGT. The D283 MED (OBR), Daoy (OBR), and D341 MED (OBR) cell lines expressed G156C, Y114F, and K165T AGT mutations, respectively. We reported previously that rhabdomyosarcoma TE-671 (OBR) also expresses a G156C mutation. These data suggest that the clonal selection of AGT mutants during treatment with O6-BG plus an alkylator may produce resistance to this intervention in clinical settings.

Pubmed
Journal: Nuclear medicine and biology
November/29/2009
Abstract

BACKGROUND

Carcinomatous meningitis (CM) is a devastating disease characterized by the dissemination of malignant tumor cells into the subarachnoid space along the brain and spine. Systemic treatment with monoclonal antibody (mAb) trastuzumab can be effective against HER2-positive systemic breast carcinoma but, like other therapies, is ineffective against CM. The goal of this study was to evaluate the therapeutic effect of alpha-particle emitting (211)At-labeled trastuzumab following intrathecal administration in a rat model of breast carcinoma CM.

METHODS

Athymic rats were injected intrathecally with MCF-7/HER2-18 breast carcinoma cells through a surgically implanted indwelling intrathecal catheter. In Experiment 1, animals received 33 or 66 muCi (211)At-labeled trastuzumab, cold trastuzumab or saline. In Experiment 2, animals were inoculated with a lower tumor burden and received 46 or 92 muCi (211)At-labeled trastuzumab or saline. In Experiment 3, animals received 28 muCi (211)At-labeled trastuzumab, 30 muCi (211)At-labeled TPS3.2 control mAb or saline. Histopathological analysis of the neuroaxis was performed at the end of the study.

RESULTS

In Experiment 1, median survival increased from 21 days for the saline and cold trastuzumab groups to 45 and 48 days for 33 and 66 muCi (211)At-labeled trastuzumab, respectively. In Experiment 2, median survival increased from 23 days for saline controls to 68 and 92 days for 46 and 92 muCi (211)At-labeled trastuzumab, respectively. In Experiment 3, median survival increased from 20 days to 29 and 36 days for animals treated with (211)At-labeled TPS3.2 and (211)At-labeled trastuzumab, respectively. Long-term survivors were observed exclusively in the (211)At-trastuzumab-treated groups.

CONCLUSIONS

Intrathecal (211)At-labeled trastuzumab shows promise as a treatment for patients with HER2-positive breast CM.

Pubmed
Journal: International journal of cancer
July/4/2010
Abstract

Multidrug resistance protein 3 (MRP3), a multidrug resistance protein identified by serial analysis of gene expression as a glioblastoma multiforme (GBM)-associated molecule, is highly expressed in GBM, but not in normal brain cells. Thus, MRP3 is a candidate for GBM immunotargeting, but to date, no monoclonal antibody has been isolated that can target an extracellular MRP3 epitope. By phage display, we have isolated 3 recombinant, fully human, single-chain Fv (scFv) antibodies, M25, M58 and M89, which specifically react with the extracellular N-terminus of human MRP3. In ELISA, these scFvs reacted only with the peptide used for screening and not with other MRP3-derived peptides. Flow cytometric analysis revealed that these scFv fragments bind specifically to viable human GBM cells displaying different MRP3 expression levels, but not to MRP3-null cells. Furthermore, these scFv antibodies failed to react with tumor cells overexpressing other MRP proteins, including MRP1, MRP2, MRP4 and MRP5. M25 and M58 also bound to viable neurospheres. Iodogen-labeled scFvs demonstrated a yield of 56-76%. The immunoreactive fractions of the radiolabeled M25, M58 and M89 scFvs were 32, 52 and 69%, respectively. M25 exhibited 20% internalization into D2159MG neurospheres, M58, 33% into D54MG cells and M89, 26% into D247MG. Immunohistochemical evaluation of human gliomas to determine the localization of MRP3 antigen using scFvs M25 and M58 showed a dense cytoplasmic and membranous staining pattern. These Fv-based recombinant antibodies, which possess superior tumor penetration capabilities and selectively target tumor cells that express MRP3, may potentially be used in immunotherapy and diagnosis for brain tumors and other cancers.

Pubmed
Journal: Current radiopharmaceuticals
May/24/2012
Abstract

Targeted radiotherapy using agents tagged with α-emitting radionuclides is gaining traction with several clinical trials already undertaken or ongoing, and others in the advanced planning stage. The most commonly used α-emitting radionuclides are 213Bi, 211At, 223Ra and 225Ac. While each one of these has pros and cons, it can be argued that 211At probably is the most versatile based on its half life, decay scheme and chemistry. On the other hand, for targeting bone metastases, 223Ra is the ideal radionuclide because simple cationic radium can be used for this purpose. In this review, we will discuss the recent developments taken place in the application of 211At-labeled radiopharmaceuticals and give an overview of the current status of 223Ra for targeted α-particle radiotherapy.

Pubmed
Journal: Cancer immunology research
July/23/2015
Abstract

A major mechanism by which human regulatory T cells (T(regs)) have been shown to suppress and kill autologous immune cells is through the granzyme-perforin pathway. However, it is unknown whether T(regs) also possess the capacity to kill tumor cells using similar mechanisms. Bispecific antibodies (bscAbs) have emerged as a promising class of therapeutics that activate T cells against tumor antigens without the need for classical MHC-restricted TCR recognition. Here, we show that a bscAb targeting the tumor-specific mutation of the epidermal growth factor receptor, EGFRvIII, redirects human CD4(+)CD25(+)FoxP3(+) T(regs) to kill glioblastoma (GBM) cells. This activity was significantly abrogated by inhibitors of the granzyme-perforin pathway. Notably, analyses of human primary GBM also displayed diffuse infiltration of granzyme-expressing FoxP3(+) T cells. Together, these data suggest that despite their known suppressive functions, tumor-infiltrating T(regs) possess potent cytotoxic mechanisms that can be co-opted for efficient tumor cell lysis.

Pubmed
Journal: Journal of neuro-oncology
January/24/2010
Abstract

This phase II trial evaluated efficacy and safety of temozolomide (TMZ) in combination with irinotecan (CPT-11) before radiotherapy in patients with newly diagnosed glioblastoma multiforme (GBM). Prior to radiotherapy, patients were treated with a maximum of three 6-week cycles of TMZ and CPT-11. Patients received TMZ at a dose of 200 mg/m(2)/day on days 1-5 and CPT-11 on days 1, 8, 22, and 29, with a dose adjustment for enzyme-inducing antiepileptic drug use. The primary end point was objective response rate (ORR). Secondary end points included progression-free survival (PFS), overall survival (OS), safety, and tumor O(6)-methylguanine-DNA methyltransferase (MGMT) expression. Of the 42 patients treated, 8 (19%) patients achieved a partial response. Median PFS and median OS were 3.1 and 13.8 months, respectively. Grade 3 or 4 AEs were documented in 36% of patients, most of which were hematologic (29%). Twenty-four percent of patients had grade 3 or 4 non-hematologic AEs, with gastrointestinal AEs being the most common (12%) Two patients died, one of intracranial hemorrhage and one of treatment-related renal failure. Low MGMT expression, compared with high MGMT expression, showed no significant difference in ORR (25 vs. 8%), median PFS (14 vs. 5 months) or OS (21 vs. 15 months). Although TMZ plus CPT-11 is at least comparable in efficacy to TMZ alone, this combination appears more toxic and poorly tolerated. The lack of correlation of activity with MGMT expression is intriguing, but needs further evaluation in subsequent trials.

Pubmed
Journal: Journal of nuclear medicine : official publication, Society of Nuclear Medicine
October/2/2005
Abstract

A variety of promising targeted radiotherapeutics labeled with alpha-emitters have been developed. Clinical investigation of these radiopharmaceuticals requires the production of high activity levels, which can be hindered by alpha-particle-mediated radiolytic effects on labeling chemistry. The purpose of this study was to investigate the effects of radiation dose on the synthesis of N-succinimidyl 3-(211)At-astatobenzoate (SAB), a compound used in our clinical trials for labeling antibodies with alpha-particle-emitting (211)At.

METHODS

Yields for the synthesis of SAB as a function of the radiation dose received by the reaction medium were determined. The variables studied included the radiohalogenation precursors N-succinimidyl 3-(tri-n-butylstannyl)benzoate (BuSTB) and N-succinimidyl 3-(trimethylstannyl)benzoate (MeSTB); the solvents chloroform, benzene, and methanol; and the addition of acetic acid and the oxidant N-chlorosuccinimide. The (211)At product spectra were determined from high-performance liquid chromatograms and then plotted against radiation dose.

RESULTS

SAB production declined rapidly with increasing dose, consistent with the documented radiolytic decomposition of BuSTB and MeSTB in chloroform. Even though these tin precursors were not appreciably degraded in benzene, SAB could not be produced in this solvent; instead, highly lipophilic (211)At-labeled species were generated in nearly quantitative yields. Although a dose-dependent decline in SAB yield also was observed in methanol, both in the presence and in the absence of an oxidant, the results were better than those obtained with the other solvents. An unexpected observation was that SAB could be obtained at a yield of greater than 30% when the reaction was run in methanol without the addition of acetic acid or an oxidant; these 2 components previously were considered essential for astatodestannylation.

CONCLUSIONS

Radiolytic factors can play an important role in the synthesis of clinical-level activities of (211)At-labeled radiopharmaceuticals, necessitating the development of reaction conditions different from those that are used successfully at lower activity levels.

Pubmed
Journal: Journal of neuroimmunology
February/20/1992
Abstract

Cells that produce tumor necrosis factor-alpha (TNF-alpha) require the presence of signaling molecules since this cytokine is not normally expressed in a constitutive manner. It has been demonstrated that glial cells can produce TNF-alpha; however, the specific inducing molecules and their mechanism(s) of action have not been clearly defined. In this study, we examined the effect of human recombinant interleukin-1 beta (IL-1 beta) on the expression of TNF-alpha by CH235-MG human malignant glioma cells. CH235-MG cells do not constitutively express TNF-alpha mRNA or protein; however, upon stimulation with IL-1 beta, these cells synthesize and secrete biologically active TNF-alpha. IL-1 beta induces the expression of a 1.9 kb TNF-alpha mRNA species. Kinetic analysis demonstrated optimum TNF-alpha mRNA expression after a 4 h exposure to IL-1 beta, and peak TNF-alpha protein production at 18 h. Cycloheximide (CHX), an inhibitor of protein synthesis, markedly increased expression of TNF-alpha mRNA in IL-1 beta stimulated CH235-MG cells, indicating that de novo protein synthesis is not required for astroglioma TNF-alpha gene expression. Nuclear run-off analysis demonstrates that IL-1 beta causes transcriptional activation of the TNF-alpha gene, and CHX enhances IL-1 beta-induced TNF-alpha transcription. Studies of TNF-alpha mRNA stability using actinomycin D show that IL-1 beta-induced TNF-alpha mRNA has a half-life of approximately 30 min, and CHX increases the half-life of IL-1 beta-induced TNF-alpha mRNA to approximately 210 min. These results indicate that IL-1 beta, a cytokine present in the central nervous system during some pathological disease states, is a potent inducer of TNF-alpha in human malignant glioma cells.

Pubmed
Journal: Biochemistry
March/29/1992
Abstract

A mouse cDNA clone encoding O6-methylguanine-DNA methyltransferase (MGMT), responsible for repair of mutagenic O6-alkylguanine in DNA, was cloned from a lambda gt11 library. On the basis of an open reading frame in cDNA, the mouse protein contains 211 amino acids with a molecular mass of 22 kDa. The size and the predicted N-terminal sequence of the mouse protein were confirmed experimentally. The deduced amino acid sequence of the mouse MGMT is 70% homologous to that of the human MGMT. Cysteine-149 was shown to be the only alkyl acceptor residue in the mouse protein, in confirmation of the prediction based on conserved sequences of different MGMTs. Mouse MGMT protein is recognized by some monoclonal antibodies specific for human MGMT. Site-directed mutagenesis was utilized to reclone the mouse cDNA in a T7 promoter-based vector for overexpression of the native repair protein in Escherichia coli. The mouse protein has a tetrapeptide sequence, Pro-Glu-Gly-Val at positions 56-59, absent in the human protein. Neither deletion of this tetrapeptide nor substitution of valine-169 with alanine affected the activity of the mutant proteins.

Pubmed
Journal: Biochemistry. Biokhimiia
September/14/2014
Abstract

The conventional chemotherapeutic treatment of malignant melanoma still remains poorly efficient in most cases. Thus the use of specific features of these tumors for development of new therapeutic modalities is highly needed. Melanocortin 1 receptor (MC1R) overexpression on the cell surface of the vast majority of human melanomas, making MC1R a valuable marker of these tumors, is one of these features. Naturally, MC1R plays a key role in skin protection against damaging ultraviolet radiation by regulating eumelanin production. MC1R activation is involved in regulation of melanocyte cell division. This article reviews the peculiarities of regulation and expression of MC1R, melanocytes, and melanoma cells, along with the possible connection of MC1R with signaling pathways regulating proliferation of tumor cells. MC1R is a cell surface endocytic receptor, thus considered perspective for diagnostics and targeted drug delivery. A number of new therapeutic approaches that utilize MC1R, including endoradiotherapy with Auger electron and α- and β-particle emitters, photodynamic therapy, and gene therapy are now being developed.

Pubmed
Journal: Expert review of anticancer therapy
June/19/2006
Abstract

Tumors of the CNS frequently have devastating consequences in terms of cognitive and motor function, personality and mortality. Despite decades of work, current therapies have done little to alter the course of these deadly diseases. The discovery that chaperones/heat-shock proteins play an important role in tumor biology and immunology have sparked much interest in utilizing these proteins as targets of therapeutics, or as therapeutics themselves, in the treatments of a variety of cancers. Neuro-oncology has only recently taken notice of these entities, and the purpose of this review is to provide a background, an update and a view to the future for the roles of chaperones/heat-shock proteins in the treatment of brain tumors.

Pubmed
Journal: Cancer treatment reports
September/30/1987
Abstract

We treated D-54 MG, an extensively characterized human glioma tumor line, in athymic mice with each of 20 antineoplastic drugs and two radiation doses. PCNU, melphalan, cyclophosphamide, and fludarabine were highly active against sc tumors. A single radiation dose of 2500 cGy produced a growth delay (T-C) of 22.0 days and four of seven tumor regressions (TRs), whereas 1500 cGy produced a T-C of 13.2 days and two of 10 TRs. Several other drugs produced smaller T-Cs and fewer TRs. With this model we can make quantitative determinations of the sensitivities of a human glioma line, permitting detailed studies of drug mechanisms.

Pubmed
Journal: Neuro-oncology
December/1/2010
Abstract

Glioblastoma multiforme (GBM) is one of the deadliest tumors afflicting humans, and the mechanisms of its onset and progression remain largely undefined. Our attempts to elucidate its molecular pathogenesis through DNA copy-number analysis by genome-wide digital karyotyping and single nucleotide polymorphism arrays identified a dramatic focal amplification on chromosome 1q32 in 4 of 57 GBM tumors. Quantitative real-time PCR measurements revealed that HDMX is the most commonly amplified and overexpressed gene in the 1q32 locus. Further genetic screening of 284 low- and high-grade gliomas revealed that HDMX amplifications occur solely in pediatric and adult GBMs and that they are mutually exclusive of TP53 mutations and MDM2 amplifications. Here, we demonstrate that HDMX regulates p53 to promote GBM growth and attenuates tumor response to chemotherapy. In GBM cells, HDMX overexpression inhibits p53-mediated transcriptional activation of p21, releases cells from G0 to G1 phase, and enhances cellular proliferation. HDMX overexpression does not affect the expression of PUMA and BAX proapoptotic genes. While in GBM cells treated with the chemotherapeutic agent 1,3-bis(2-chloroethyl)-1-nitrosourea (BCNU), HDMX appears to stabilize p53 and promote phosphorylation of the DNA double-stranded break repair protein H2AX, up-regulate the DNA repair gene VPX, stimulate DNA repair, and confer resistance to BCNU. In summary, HDMX exhibits bona fide oncogenic properties and offers a promising molecular target for GBM therapeutic intervention.

Pubmed
Journal: Nuclear medicine and biology
January/4/2015
Abstract

BACKGROUND

Modular nanotransporters (MNTs) are vehicles designed to transport drugs from the cell surface via receptor-mediated endocytosis and endosomal escape to nucleus. Hence their conjugation to Auger electron emitters, can cause severe cell killing, by nuclear localization. Herein we evaluate the use of MNT as a platform for targeted radiotherapy with (67)Ga.

METHODS

EGF was the targeting ligand on the MNT, and NOTA was selected for its radiolabeling with (67)Ga. In the radiolabeling study we dealt with the precipitation of MNT (pI 5.7) at the labeling pH (4.5-5.5) of (67)Ga. Cellular and nuclei uptake of (67)Ga-NOTA-MNT by the A431 cell line was determined. Its specific cytotoxicity was compared to that of (67)Ga-EDTA, (67)Ga-NOTA-BSA and (67)Ga-NOTA-hEGF, in A431 and U87MGWTT, cell lines, by clonogenic assay. Dosimetry studies were also performed.

RESULTS

(67)Ga-NOTA-MNT was produced with 90% yield and specific activity of 25.6mCi/mg. The in vitro kinetics revealed an increased uptake over 24h. 55% of the internalized radioactivity was detected in the nuclei at 1h. The cytotoxicity of (67)Ga-NOTA-MNT on A431 cell line was 17 and 385-fold higher when compared to non-specific (67)Ga-NOTA-BSA and (67)Ga-EDTA. While its cytotoxic potency was 13 and 72-fold higher when compared to (67)Ga-NOTA-hEGF in the A431 and the U87MGWTT cell lines, respectively, validating its nuclear localization. The absorbed dose, for 63% cell killing, was 8Gy, confirming the high specific index of (67)Ga.

CONCLUSIONS

These results demonstrate the feasibility of using MNT as a platform for single cell kill targeted radiotherapy by Auger electron emitters.

Pubmed
Journal: Mutation research
December/17/1990
Abstract

The results of efforts to identify and quantify macromolecular adducts of ethylene oxide (ETO), to determine the source and significance of background levels of these adducts, and to generate molecular dosimetry data on these adducts are reviewed. A time-course study was conducted to investigate the formation and persistence of 7-(2-hydroxyethyl)guanine (7-HEG; Fig. 1) in various tissues of rats exposed to ETO by inhalation, providing information necessary for designing investigations on the molecular dosimetry of adducts of ETO. Male F344 rats were exposed 6 h/day for up to 4 weeks (5 days/wk) to 300 ppm ETO by inhalation. Another set of rats was exposed for 4 weeks to 300 ppm ETO, and then killed 1-10 days after cessation of exposures. DNA samples from control and treated rats were analyzed for 7-HEG using neutral thermal hydrolysis, HPLC separation, and fluorescence detection. The adduct was detectable in all tissues of treated rats following 1 day of ETO exposure and increased approximately linearly for 3-5 days before the rate of increase began to level off. Concentrations of 7-HEG were greatest in brain, but the extent of formation was similar in all tissues studied. The adduct disappeared slowly from DNA, with an apparent half-life of approx. 7 days. The shape of the formation curve and the in vivo half-life indicate that 7-HEG will approach steady-state concentrations in rat DNA by 28 days of ETO exposure. The similarity in 7-HEG formation in target and nontarget tissues indicates that the tissue specificity for tumor induction is due to factors in addition to DNA-adduct formation.

Pubmed
Journal: Current pharmaceutical design
September/23/2015
Abstract

The review is devoted to a subcellular drug delivery system, modular nanotransporters (MNT) that can penetrate into target cells and deliver a therapeutic into their subcellular compartments, particularly into the nucleus. The therapeutics which need such type of delivery belong to two groups: (i) those that exert their effect only when delivered into a certain cell compartment (like DNA delivered into the nucleus); and (ii) those drugs that are capable of exerting their effect in different parts of the cells, however there can be found a cell compartment that is the most sensitive to their effect. A particular interest attract such cytotoxic agents as Auger electron emitters which are known to be ineffective outside the cell nucleus, whereas they possess high cytotoxicity in the vicinity of nuclear DNA through the induction of non-reparable double-strand DNA breaks. The review discusses main approaches permitting to choose internalizable receptors permitting both recognition of target cells and penetration into them. Special interest attract folate receptors which become accessible to blood circulating therapeutics after malignant transformation or on activated macrophages which makes them an attractive target for both several oncological and inflammatory diseases, like atherosclerosis. In vitro and in vivo experiments demonstrated that MNT is a promising platform for targeted delivery of different therapeutics into the nuclei of target cells.

load more...