Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(12K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Annual Review of Neuroscience
September/12/2001
Abstract
Neurotrophins regulate development, maintenance, and function of vertebrate nervous systems. Neurotrophins activate two different classes of receptors, the Trk family of receptor tyrosine kinases and p75NTR, a member of the TNF receptor superfamily. Through these, neurotrophins activate many signaling pathways, including those mediated by ras and members of the cdc-42/ras/rho G protein families, and the MAP kinase, PI-3 kinase, and Jun kinase cascades. During development, limiting amounts of neurotrophins function as survival factors to ensure a match between the number of surviving neurons and the requirement for appropriate target innervation. They also regulate cell fate decisions, axon growth, dendrite pruning, the patterning of innervation and the expression of proteins crucial for normal neuronal function, such as neurotransmitters and ion channels. These proteins also regulate many aspects of neural function. In the mature nervous system, they control synaptic function and synaptic plasticity, while continuing to modulate neuronal survival.
Publication
Journal: Nature Reviews Neuroscience
April/27/2005
Abstract
Impairments in certain cognitive functions, such as working memory, are core features of schizophrenia. Convergent findings indicate that a deficiency in signalling through the TrkB neurotrophin receptor leads to reduced GABA (gamma-aminobutyric acid) synthesis in the parvalbumin-containing subpopulation of inhibitory GABA neurons in the dorsolateral prefrontal cortex of individuals with schizophrenia. Despite both pre- and postsynaptic compensatory responses, the resulting alteration in perisomatic inhibition of pyramidal neurons contributes to a diminished capacity for the gamma-frequency synchronized neuronal activity that is required for working memory function. These findings reveal specific targets for therapeutic interventions to improve cognitive function in individuals with schizophrenia.
Publication
Journal: Annual Review of Biochemistry
December/8/2003
Abstract
Trk receptors are a family of three receptor tyrosine kinases, each of which can be activated by one or more of four neurotrophins-nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), and neurotrophins 3 and 4 (NT3 and NT4). Neurotrophin signaling through these receptors regulates cell survival, proliferation, the fate of neural precursors, axon and dendrite growth and patterning, and the expression and activity of functionally important proteins, such as ion channels and neurotransmitter receptors. In the adult nervous system, the Trk receptors regulate synaptic strength and plasticity. The cytoplasmic domains of Trk receptors contain several sites of tyrosine phosphorylation that recruit intermediates in intracellular signaling cascades. As a result, Trk receptor signaling activates several small G proteins, including Ras, Rap-1, and the Cdc-42-Rac-Rho family, as well as pathways regulated by MAP kinase, PI 3-kinase and phospholipase-C-gamma (PLC-gamma). Trk receptor activation has different consequences in different cells, and the specificity of downstream Trk receptor-mediated signaling is controlled through expression of intermediates in these signaling pathways and membrane trafficking that regulates localization of different signaling constituents. Perhaps the most fascinating aspect of Trk receptor-mediated signaling is its interplay with signaling promoted by the pan-neurotrophin receptor p75NTR. p75NTR activates a distinct set of signaling pathways within cells that are in some instances synergistic and in other instances antagonistic to those activated by Trk receptors. Several of these are proapoptotic but are suppressed by Trk receptor-initiated signaling. p75NTR also influences the conformations of Trk receptors; this modifies ligand-binding specificity and affinity with important developmental consequences.
Publication
Journal: Philosophical Transactions of the Royal Society B: Biological Sciences
April/2/2007
Abstract
Neurotrophins are a family of closely related proteins that were identified initially as survival factors for sensory and sympathetic neurons, and have since been shown to control many aspects of survival, development and function of neurons in both the peripheral and the central nervous systems. Each of the four mammalian neurotrophins has been shown to activate one or more of the three members of the tropomyosin-related kinase (Trk) family of receptor tyrosine kinases (TrkA, TrkB and TrkC). In addition, each neurotrophin activates p75 neurotrophin receptor (p75NTR), a member of the tumour necrosis factor receptor superfamily. Through Trk receptors, neurotrophins activate Ras, phosphatidyl inositol-3 (PI3)-kinase, phospholipase C-gamma1 and signalling pathways controlled through these proteins, such as the MAP kinases. Activation of p75NTR results in activation of the nuclear factor-kappaB (NF-kappaB) and Jun kinase as well as other signalling pathways. Limiting quantities of neurotrophins during development control the number of surviving neurons to ensure a match between neurons and the requirement for a suitable density of target innervation. The neurotrophins also regulate cell fate decisions, axon growth, dendrite growth and pruning and the expression of proteins, such as ion channels, transmitter biosynthetic enzymes and neuropeptide transmitters that are essential for normal neuronal function. Continued presence of the neurotrophins is required in the adult nervous system, where they control synaptic function and plasticity, and sustain neuronal survival, morphology and differentiation. They also have additional, subtler roles outside the nervous system. In recent years, three rare human genetic disorders, which result in deleterious effects on sensory perception, cognition and a variety of behaviours, have been shown to be attributable to mutations in brain-derived neurotrophic factor and two of the Trk receptors.
Publication
Journal: Nature Reviews Neuroscience
May/8/2003
Publication
Journal: Nature Reviews Neuroscience
March/28/2001
Abstract
The role of neurotrophins as regulatory factors that mediate the differentiation and survival of neurons has been well described. More recent evidence indicates that neurotrophins may also act as synaptic modulators. Here, I review the evidence that synaptic activity regulates the synthesis, secretion and action of neurotrophins, which can in turn induce immediate changes in synaptic efficacy and morphology. By this account, neurotrophins may participate in activity-dependent synaptic plasticity, linking synaptic activity with long-term functional and structural modification of synaptic connections.
Authors
Publication
Journal: Science
December/30/2001
Abstract
Neurotrophins are growth factors that promote cell survival, differentiation, and cell death. They are synthesized as proforms that can be cleaved intracellularly to release mature, secreted ligands. Although proneurotrophins have been considered inactive precursors, we show here that the proforms of nerve growth factor (NGF) and the proforms of brain derived neurotrophic factor (BDNF) are secreted and cleaved extracellularly by the serine protease plasmin and by selective matrix metalloproteinases (MMPs). ProNGF is a high-affinity ligand for p75(NTR) with high affinity and induced p75NTR-dependent apoptosis in cultured neurons with minimal activation of TrkA-mediated differentiation or survival. The biological action of neurotrophins is thus regulated by proteolytic cleavage, with proforms preferentially activating p75NTR to mediate apoptosis and mature forms activating Trk receptors to promote survival.
Pulse
Views:
2
Posts:
No posts
Rating:
Not rated
Publication
Journal: Current Opinion in Neurobiology
August/23/2000
Abstract
Neurotrophins use two types of receptors, the Trk tyrosine kinase receptors and the p75 neurotrophin receptor (p75NTR), to regulate the growth, development, survival and repair of the nervous system. These receptors can either collaborate with or inhibit each other's actions to mediate neurotrophin effects. The development and survival of neurons is thus based upon the functional interplay of the signals generated by Trk and p75NTR. In the past two years, the signaling pathways used by these receptors, including Akt and MAPK-induced signaling via Trk, and JNK, p53, and NF-kappaB signaling via p75NTR, have been identified. In addition, a number of novel p75NTR-interacting proteins have been identified that transmit growth, survival, and apoptotic signals.
Publication
Journal: Nature Reviews Neuroscience
June/16/2002
Abstract
Members of the nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) families comprising neurotrophins and GDNF-family ligands (GFLs), respectively are crucial for the development and maintenance of distinct sets of central and peripheral neurons. Knockout studies in the mouse have revealed that members of these two families might collaborate or act sequentially in a given neuron. Although neurotrophins and GFLs activate common intracellular signalling pathways through their receptor tyrosine kinases, several clear differences exist between these families of trophic factors.
Publication
Journal: Nature
November/6/2000
Abstract
Neuronal apoptosis sculpts the developing brain and has a potentially important role in neurodegenerative diseases. The principal molecular components of the apoptosis programme in neurons include Apaf-1 (apoptotic protease-activating factor 1) and proteins of the Bcl-2 and caspase families. Neurotrophins regulate neuronal apoptosis through the action of critical protein kinase cascades, such as the phosphoinositide 3-kinase/Akt and mitogen-activated protein kinase pathways. Similar cell-death-signalling pathways might be activated in neurodegenerative diseases by abnormal protein structures, such as amyloid fibrils in Alzheimer's disease. Elucidation of the cell death machinery in neurons promises to provide multiple points of therapeutic intervention in neurodegenerative diseases.
load more...