Nab-Paclitaxel in Combination With Carboplatin as First-line Therapy in Patients With NSCLC
Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(5)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: CA - A Cancer Journal for Clinicians
May/4/2015
Abstract
Cancer constitutes an enormous burden on society in more and less economically developed countries alike. The occurrence of cancer is increasing because of the growth and aging of the population, as well as an increasing prevalence of established risk factors such as smoking, overweight, physical inactivity, and changing reproductive patterns associated with urbanization and economic development. Based on GLOBOCAN estimates, about 14.1 million new cancer cases and 8.2 million deaths occurred in 2012 worldwide. Over the years, the burden has shifted to less developed countries, which currently account for about 57% of cases and 65% of cancer deaths worldwide. Lung cancer is the leading cause of cancer death among males in both more and less developed countries, and has surpassed breast cancer as the leading cause of cancer death among females in more developed countries; breast cancer remains the leading cause of cancer death among females in less developed countries. Other leading causes of cancer death in more developed countries include colorectal cancer among males and females and prostate cancer among males. In less developed countries, liver and stomach cancer among males and cervical cancer among females are also leading causes of cancer death. Although incidence rates for all cancers combined are nearly twice as high in more developed than in less developed countries in both males and females, mortality rates are only 8% to 15% higher in more developed countries. This disparity reflects regional differences in the mix of cancers, which is affected by risk factors and detection practices, and/or the availability of treatment. Risk factors associated with the leading causes of cancer death include tobacco use (lung, colorectal, stomach, and liver cancer), overweight/obesity and physical inactivity (breast and colorectal cancer), and infection (liver, stomach, and cervical cancer). A substantial portion of cancer cases and deaths could be prevented by broadly applying effective prevention measures, such as tobacco control, vaccination, and the use of early detection tests.
Pulse
Views:
46
Posts:
No posts
Rating:
Not rated
Publication
Journal: European Journal of Cancer
September/26/2001
Abstract
Cremophor EL (CrEL) is a formulation vehicle used for various poorly-water soluble drugs, including the anticancer agent paclitaxel (Taxol). In contrast to earlier reports, CrEL is not an inert vehicle, but exerts a range of biological effects, some of which have important clinical implications. Its use has been associated with severe anaphylactoid hypersensitivity reactions, hyperlipidaemia, abnormal lipoprotein patterns, aggregation of erythrocytes and peripheral neuropathy. The pharmacokinetic behaviour of CrEL is dose-independent, although its clearance is highly influenced by duration of the infusion. This is particularly important since CrEL can affect the disposition of various drugs by changing the unbound drug concentration through micellar encapsulation. In addition, it has been shown that CrEL, as an integral component of paclitaxel chemotherapy, modifies the toxicity profile of certain anticancer agents given concomitantly, by mechanisms other than kinetic interference. A clear understanding of the biological and pharmacological role of CrEL is essential to help oncologists avoid side-effects associated with the use of paclitaxel or other agents using this vehicle. With the present development of various new anticancer agents, it is recommended that alternative formulation approaches should be pursued to allow a better control of the toxicity of the treatment and the pharmacological interactions related to the use of CrEL.
Publication
Journal: Journal of Clinical Oncology
August/22/2012
Abstract
OBJECTIVE
This phase III trial compared the efficacy and safety of albumin-bound paclitaxel (nab-paclitaxel) plus carboplatin with solvent-based paclitaxel (sb-paclitaxel) plus carboplatin in advanced non-small-cell lung cancer (NSCLC).
METHODS
In all, 1,052 untreated patients with stage IIIB to IV NSCLC were randomly assigned 1:1 to receive 100 mg/m(2) nab-paclitaxel weekly and carboplatin at area under the concentration-time curve (AUC) 6 once every 3 weeks (nab-PC) or 200 mg/m(2) sb-paclitaxel plus carboplatin AUC 6 once every 3 weeks (sb-PC). The primary end point was objective overall response rate (ORR).
RESULTS
On the basis of independent assessment, nab-PC demonstrated a significantly higher ORR than sb-PC (33% v 25%; response rate ratio, 1.313; 95% CI, 1.082 to 1.593; P = .005) and in patients with squamous histology (41% v 24%; response rate ratio, 1.680; 95% CI, 1.271 to 2.221; P < .001). nab-PC was as effective as sb-PC in patients with nonsquamous histology (ORR, 26% v 25%; P = .808). There was an approximately 10% improvement in progression-free survival (median, 6.3 v 5.8 months; hazard ratio [HR], 0.902; 95% CI, 0.767 to 1.060; P = .214) and overall survival (OS; median, 12.1 v 11.2 months; HR, 0.922; 95% CI, 0.797 to 1.066; P = .271) in the nab-PC arm versus the sb-PC arm, respectively. Patients ≥ 70 years old and those enrolled in North America showed a significantly increased OS with nab-PC versus sb-PC. Significantly less grade ≥ 3 neuropathy, neutropenia, arthralgia, and myalgia occurred in the nab-PC arm, and less thrombocytopenia and anemia occurred in the sb-PC arm.
CONCLUSIONS
The administration of nab-PC as first-line therapy in patients with advanced NSCLC was efficacious and resulted in a significantly improved ORR versus sb-PC, achieving the primary end point. nab-PC produced less neuropathy than sb-PC.
Publication
Journal: Annals of Oncology
February/20/2015
Publication
Journal: Journal of Cancer Research and Clinical Oncology
September/17/1995
Abstract
Carboplatin is a chemotherapeutic agent frequently used in the treatment of various malignancies. The myelotoxicity and clinical efficacy of carboplatin correlate with the clearance of the drug, which is correlated to the glomerular filtration rate (GFR). Dosing of this agent based solely upon the patients body surface area is therefore not accurate enough; the GFR, and thus the clearance of carboplatin differ in each patient irrespective of the body area. Consequently, some patients undergo a higher systemic exposure, expressed as the area under the plasma concentration/time curve (AUC), than others when dosages of carboplatin are given on the basis of the body surface area. A high AUC correlates with increased toxicity, thus increasing the risks of the treatment, but in the case of a low AUC the therapeutical efficacy decreases. This indicates that an individual dosing strategy is warranted to obtain the optimal AUC. In this article, the development and application of a simple equation, known as the Calvert formula, are discussed. This formula can be used to calculate the carboplatin dose accurately in order to obtain a target AUC by using only the GFR. The formula is: dose (mg) = AUC (mg ml-1 min) x [GFR (ml/min) + 25 (ml/min)]. This formula has proven to be, in both retrospective and prospective studies, a reliable tool to calculate the optimal dose of carboplatin Future studies should determine the value of the creatinine clearance as a measure for the GFR.