Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(2K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Annual Review of Physiology
May/15/2008
Abstract
The airways mucus gel performs a critical function in defending the respiratory tract against pathogenic and environmental challenges. In normal physiology, the secreted mucins, in particular the polymeric mucins MUC5AC and MUC5B, provide the organizing framework of the airways mucus gel and are major contributors to its rheological properties. However, overproduction of mucins is an important factor in the morbidity and mortality of chronic airways disease (e.g., asthma, cystic fibrosis, and chronic obstructive pulmonary disease). The roles of these enormous, multifunctional, O-linked glycoproteins in health and disease are discussed.
Publication
Journal: Journal of Biological Chemistry
June/29/2003
Abstract
Mucus hypersecretion and persistent airway inflammation are common features of various airway diseases, such as asthma, chronic obstructive pulmonary disease, and cystic fibrosis. One key question is: does the associated airway inflammation in these diseases affect mucus production? If so, what is the underlying mechanism? It appears that increased mucus secretion results from increased mucin gene expression and is also frequently accompanied by an increased number of mucous cells (goblet cell hyperplasia/metaplasia) in the airway epithelium. Many studies on mucin gene expression have been directed toward Th2 cytokines such as interleukin (IL)-4, IL-9, and IL-13 because of their known pathophysiological role in allergic airway diseases such as asthma. However, the effect of these cytokines has not been definitely linked to their direct interaction with airway epithelial cells. In our study, we treated highly differentiated cultures of primary human tracheobronchial epithelial (TBE) cells with a panel of cytokines (interleukin-1alpha, 1beta, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17, 18, and tumor necrosis factor alpha). We found that IL-6 and IL-17 could stimulate the mucin genes, MUC5B and MUC5AC. The Th2 cytokines IL-4, IL-9, and IL-13 did not stimulate MUC5AC or MUC5B in our experiments. A similar stimulation of MUC5B/Muc5b expression by IL-6 and IL-17 was demonstrated in primary monkey and mouse TBE cells. Further investigation of MUC5B expression demonstrated that IL-17's effect is at least partly mediated through IL-6 by a JAK2-dependent autocrine/paracrine loop. Finally, evidence is presented to show that both IL-6 and IL-17 mediate MUC5B expression through the ERK signaling pathway.
Publication
Journal: Nature
February/10/2014
Abstract
Respiratory surfaces are exposed to billions of particulates and pathogens daily. A protective mucus barrier traps and eliminates them through mucociliary clearance (MCC). However, excessive mucus contributes to transient respiratory infections and to the pathogenesis of numerous respiratory diseases. MUC5AC and MUC5B are evolutionarily conserved genes that encode structurally related mucin glycoproteins, the principal macromolecules in airway mucus. Genetic variants are linked to diverse lung diseases, but specific roles for MUC5AC and MUC5B in MCC, and the lasting effects of their inhibition, are unknown. Here we show that mouse Muc5b (but not Muc5ac) is required for MCC, for controlling infections in the airways and middle ear, and for maintaining immune homeostasis in mouse lungs, whereas Muc5ac is dispensable. Muc5b deficiency caused materials to accumulate in upper and lower airways. This defect led to chronic infection by multiple bacterial species, including Staphylococcus aureus, and to inflammation that failed to resolve normally. Apoptotic macrophages accumulated, phagocytosis was impaired, and interleukin-23 (IL-23) production was reduced in Muc5b(-/-) mice. By contrast, in mice that transgenically overexpress Muc5b, macrophage functions improved. Existing dogma defines mucous phenotypes in asthma and chronic obstructive pulmonary disease (COPD) as driven by increased MUC5AC, with MUC5B levels either unaffected or increased in expectorated sputum. However, in many patients, MUC5B production at airway surfaces decreases by as much as 90%. By distinguishing a specific role for Muc5b in MCC, and by determining its impact on bacterial infections and inflammation in mice, our results provide a refined framework for designing targeted therapies to control mucin secretion and restore MCC.
Publication
Journal: Investigative Ophthalmology and Visual Science
June/11/2003
Abstract
OBJECTIVE
The corneal and conjunctival epithelia, which cover the ocular surface, play an important role in preventing pathogen penetrance into the eye and maintaining a wet-surface phenotype by producing highly hydrophilic mucin molecules for their apical surfaces. Ocular surface infections, wounding, and pathologies resulting in dry eye threaten sight and can cause blindness. Understanding the ocular surface defense mechanisms that mucins provide has been hampered by the lack of immortalized human corneal and conjunctival epithelial cell lines that retain mucin gene expression patterns of the native tissue. The purpose of this work was to characterize newly developed immortalized corneal and conjunctival cell lines using mucin gene expression as markers of differentiation.
METHODS
The cell lines were derived as described by a previously published process. Primary cultures of corneal-limbal and conjunctival epithelia were sequentially transduced to express a dominant negative p53 protein and a p16(INK4A/Rb)-resistant, mutant cdk4 protein, which enabled the cells to bypass a senescence mechanism recently identified for primary cultures of keratinocytes. These cells were then transduced to express the catalytic subunit of telomerase to permit them to retain their telomeres and divide indefinitely. Cellular morphology and expression of mucin genes in the two cell lines, designated HCLE for the human corneal-limbal line and HCjE for the human conjunctival cell line, were determined after culture on plastic, type I collagen, or Matrigel, in coculture with fibroblasts, and in severe combined immunodeficient (SCID) mice. Expression of the epithelial cell mucins was assayed by reverse transcription, real-time polymerase chain reaction, immunoblot analysis, or immunohistochemistry and compared with expression in native cornea and conjunctiva.
RESULTS
When grown in high-calcium medium on plastic and type I collagen, cells of both lines stratified, exhibiting multiple cell layers. In Matrigel, both cell lines formed cell aggregates that contained lumens. In the SCID mice, the conjunctival cell line formed stratified layers under the kidney capsule. The corneal cell line expressed keratins K3 and K12, the keratins that are corneal-epithelial-specific, and both cell lines expressed K19. As in native tissue, the HCLE and HCjE cell lines expressed the membrane-associated mucins, MUC1, -4, and -16, although their levels were generally lower. Levels of MUC4 and -16 mRNA were the most comparable to native tissue, particularly when cultured on plastic. Apical cells of the stratified cultures were the cells that expressed the membrane-associated mucins MUC1 and -16. Goblet-cell-specific MUC5AC mRNA and protein was detected in a small population of HCjE cells only when using type I collagen as a substrate or when cells were cocultured with fibroblasts. Both cell lines produced glycosylated mucins as indicated by binding of H185 antibody, an antibody that recognizes a carbohydrate epitope on mucins.
CONCLUSIONS
The immortalized corneal (HCLE) and conjunctival (HCjE) cell lines exhibit the mucin gene expression repertoire of their native epithelia. These cell lines will be useful in determining regulation of ocular surface mucin gene expression and, potentially, goblet cell differentiation.
Publication
Journal: Cancer and Metastasis Reviews
October/7/2004
Abstract
Mucins are high-molecular weight epithelial glycoproteins with a high content of clustered oligosaccharides O-glycosidically linked to tandem repeat peptides rich in threonine, serine, and proline. There are two structurally and functionally distinct classes of mucins: secreted gel-forming mucins (MUC2, MUC5AC, MUC5B, and MUC6) and transmembrane mucins (MUC1, MUC3A, MUC3B, MUC4, MUC12, MUC17), although the products of some MUC genes do not fit well into either class (MUC7, MUC8, MUC9, MUC13, MUC15, MUC16). MUC1 mucin, as detected immunologically, is increased in expression in colon cancers, which correlates with a worse prognosis. Expression of MUC2 secreted gel-forming mucin is generally decreased in colorectal adenocarcinoma, but preserved in mucinous carcinomas, a distinct subtype of colon cancer associated with microsatellite instability. Another secreted gel-forming mucin, MUC5AC, a product of normal gastric mucosa, is absent from normal colon, but frequently present in colorectal adenomas and colon cancers. The O-glycosidically linked oligosaccharides of mucins can be described in terms of core type, backbone type, and peripheral structures. Colon cancer mucins have differences in both core carbohydrates and in peripheral carbohydrate structures that are being investigated as diagnostic and prognostic markers, and also as targets for cancer vaccines. Colon cancer mucins typically have increases in three core structures: Tn antigen (GalNAcalphaThr/Ser), TF antigen (Galbeta3GalNAc) and sialyl Tn (NeuAcalpha6GalNAc). The type 3 core (GlcNAcbeta3Ga1NAc) predominant in normal colonic mucin is lacking in colon cancer mucins. There are cancer-associated alterations in the peripheral carbohydrates of colonic mucins including a decrease in O-acetyl-sialic acid and a decrease in sulfation. There are, however, cancer-associated increases in sialyl LeX and related structures on mucins and other glycoproteins that can serve as ligands for selectins, increasing the metastatic capacity of colon cancer cells. The endogenous galactoside-binding protein galectin-3, which is expressed at higher levels in colon cancers than normal colon, binds to colon cancer mucin as well as other glycoproteins. Interference of the binding of selectins and galectin-3 to mucin may show therapeutic or preventative promise for colon cancer.
Publication
Journal: Immunological Reviews
January/28/2015
Abstract
The gastrointestinal tract is covered by mucus that has different properties in the stomach, small intestine, and colon. The large highly glycosylated gel-forming mucins MUC2 and MUC5AC are the major components of the mucus in the intestine and stomach, respectively. In the small intestine, mucus limits the number of bacteria that can reach the epithelium and the Peyer's patches. In the large intestine, the inner mucus layer separates the commensal bacteria from the host epithelium. The outer colonic mucus layer is the natural habitat for the commensal bacteria. The intestinal goblet cells secrete not only the MUC2 mucin but also a number of typical mucus components: CLCA1, FCGBP, AGR2, ZG16, and TFF3. The goblet cells have recently been shown to have a novel gate-keeping role for the presentation of oral antigens to the immune system. Goblet cells deliver small intestinal luminal material to the lamina propria dendritic cells of the tolerogenic CD103(+) type. In addition to the gel-forming mucins, the transmembrane mucins MUC3, MUC12, and MUC17 form the enterocyte glycocalyx that can reach about a micrometer out from the brush border. The MUC17 mucin can shuttle from a surface to an intracellular vesicle localization, suggesting that enterocytes might control and report epithelial microbial challenge. There is communication not only from the epithelial cells to the immune system but also in the opposite direction. One example of this is IL10 that can affect and improve the properties of the inner colonic mucus layer. The mucus and epithelial cells of the gastrointestinal tract are the primary gate keepers and controllers of bacterial interactions with the host immune system, but our understanding of this relationship is still in its infancy.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
May/19/1999
Abstract
Goblet-cell hyperplasia is a critical pathological feature in hypersecretory diseases of airways. However, the underlying mechanisms are unknown, and no effective therapy exists. Here we show that stimulation of epidermal growth factor receptors (EGF-R) by its ligands, EGF and transforming growth factor alpha (TGFalpha), causes MUC5AC expression in airway epithelial cells both in in vitro and in vivo. We found that a MUC5AC-inducing epithelial cell line, NCI-H292, expresses EGF-R constitutively; EGF-R gene expression was stimulated further by tumor necrosis factor alpha (TNFalpha). EGF-R ligands increased the expression of MUC5AC at both gene and protein levels, and this effect was potentiated by TNFalpha. Selective EGF-R tyrosine kinase inhibitors blocked MUC5AC expression induced by EGF-R ligands. Pathogen-free rats expressed little EGF-R protein in airway epithelial cells; intratracheal instillation of TNFalpha induced EGF-R in airway epithelial cells, and subsequent instillation of EGF-R ligands increased the number of goblet cells, Alcian blue-periodic acid-Schiff staining (reflecting mucous glycoconjugates), and MUC5AC gene expression, whereas TNFalpha, EGF, or TGFalpha alone was without effect. In sensitized rats, three intratracheal instillations of ovalbumin resulted in EGF-R expression and goblet-cell production in airway epithelium. Pretreatment with EGF-R tyrosine kinase inhibitor, BIBX1522, prevented goblet-cell production both in rats stimulated by TNFalpha-EGF-R ligands and in an asthma model. These findings suggest potential roles for inhibitors of the EGF-R cascade in hypersecretory diseases of airways.
Publication
Journal: American Journal of Respiratory and Critical Care Medicine
March/28/2001
Abstract
Excessive airway mucus is an important cause of morbidity and mortality in asthma, but the relationship between accumulation of mucus and goblet cell size, number, and function is incompletely understood. To address these questions, stored mucin in the epithelium and goblet cell size and number were measured morphometrically, and mucin gene expression was measured by polymerase chain reaction and immunohistochemistry in endobronchial biopsies from 13 subjects with mild and moderate asthma and from 12 healthy control subjects. Secreted mucin was measured in induced sputum. We found that stored mucin in the airway epithelium was three times higher than normal in the subjects with asthma (p < 0.005). Goblet cell size was similar in both groups, but goblet cell number was significantly higher in the subjects with asthma (93,043 +/- 15,824 versus 41,959 +/- 9,230/mm3, p < 0.05). In mild asthma (FEV1>> or = 80% pred, n = 7), the level of stored mucin was as high as in moderate asthma (FEV1 < 80% pred, n = 6), but the level of secreted mucin was significantly lower (28.4 +/- 6.3 versus 73.5 +/- 47.5 microg/ml, p < 0.05). Secreted mucin was inversely correlated with stored mucin for the whole asthma group (rs = -0.78, p = 0.007). MUC5AC was the predominant mucin gene expressed in healthy subjects and subjects with asthma, and MUC5AC protein was increased in the subjects with asthma. We conclude that even mild asthma is associated with goblet cell hyperplasia and increased stored mucin in the airway epithelium, whereas moderate asthma is associated with increased stored mucin and secreted mucin. These findings suggest that acute degranulation of hyperplastic goblet cells may represent a mechanism for asthma exacerbations in mild and moderate asthma and that chronic degranulation of goblet cells may contribute to chronic airway narrowing in moderate asthma.
Publication
Journal: Journal of Experimental Medicine
July/17/2011
Abstract
De novo expression of Muc5ac, a mucin not normally expressed in the intestinal tract, is induced in the cecum of mice resistant to Trichuris muris infection. In this study, we investigated the role of Muc5ac, which is detected shortly before worm expulsion and is associated with the production of interleukin-13 (IL-13), in resistance to this nematode. Muc5ac-deficient mice were incapable of expelling T. muris from the intestine and harbored long-term chronic infections, despite developing strong T(H)2 responses. Muc5ac-deficient mice had elevated levels of IL-13 and, surprisingly, an increase in the T(H)1 cytokine IFN-γ. Because T(H)1 inflammation is thought to favor chronic nematode infection, IFN-γ was neutralized in vivo, resulting in an even stronger T(H)2-type immune response. Nevertheless, despite a more robust T(H)2 effector response, the Muc5ac-deficient mice remained highly susceptible to chronic T. muris infection. Importantly, human MUC5AC had a direct detrimental effect on nematode vitality. Moreover, the absence of Muc5ac caused a significant delay in the expulsion of two other gut-dwelling nematodes (Trichinella spiralis and Nippostrongylus brasiliensis). Thus, for the first time, we identify a single mucin, Muc5ac, as a direct and critical mediator of resistance during intestinal nematode infection.
Publication
Journal: Clinical Cancer Research
March/26/2002
Abstract
OBJECTIVE
Mucins are important biomolecules that frequently display an altered expression under pathological conditions. In a search for a unique and reliable marker(s) specific for pancreatic adenocarcinoma, we investigated the expression of different MUC genes in pancreatic tumors and tumor cell lines, in chronic pancreatitis, and in the normal pancreas.
METHODS
Total RNA from 16 pancreatic tumors, 10 chronic pancreatitis tissues, 7 normal pancreas tissues, and 15 pancreatic tumor cell lines were analyzed by reverse transcription-PCR with primers specific for MUC1, MUC2, MUC3, MUC4, MUC5AC, MUC5B, MUC6, and MUC7 genes and by RNA slot blot analyses.
RESULTS
Our results revealed that of all of the mucins examined, only MUC4 displayed a differential expression that was specific for pancreatic adenocarcinoma. Indeed, a substantial number of tumor tissue samples (12 of 16) and tumor cell lines (11 of 15) expressed MUC4 mRNA, whereas samples from chronic pancreatitis (0 of 10) and the normal pancreas (0 of 7) tissues failed to exhibit any detectable level of this mucin. In contrast, no significant alteration was observed in the expression of the other mucins relative to that in the normal pancreas samples.
CONCLUSIONS
Overall, this work demonstrates that pancreatic mucin MUC4 is a tumor-associated mucin. Furthermore, the present study introduces a novel avenue to discriminate between pancreatic adenocarcinoma and pancreatitis. Future investigations of the role played by MUC4 in pancreatic adenocarcinoma may prove to be useful in the formulation of strategies for the diagnosis and therapeutic treatment of this malignancy.
Publication
Journal: Journal of Clinical Investigation
July/31/2006
Abstract
Bronchial asthma, the most prevalent cause of significant respiratory morbidity in the developed world, typically is a chronic disorder associated with long-term changes in the airways. We developed a mouse model of chronic asthma that results in markedly increased numbers of airway mast cells, enhanced airway responses to methacholine or antigen, chronic inflammation including infiltration with eosinophils and lymphocytes, airway epithelial goblet cell hyperplasia, enhanced expression of the mucin genes Muc5ac and Muc5b, and increased levels of lung collagen. Using mast cell-deficient (Kit(W-sh/W-sh) and/or Kit(W/W-v)) mice engrafted with FcRgamma+/+ or FcRgamma-/- mast cells, we found that mast cells were required for the full development of each of these features of the model. However, some features also were expressed, although usually at less than wild-type levels, in mice whose mast cells lacked FcRgamma and therefore could not be activated by either antigen- and IgE-dependent aggregation of Fc epsilonRI or the binding of antigen-IgG1 immune complexes to Fc gammaRIII. These findings demonstrate that mast cells can contribute to the development of multiple features of chronic asthma in mice and identify both Fc Rgamma-dependent and Fc Rgamma-independent pathways of mast cell activation as important for the expression of key features of this asthma model.
Publication
Journal: Modern Pathology
December/15/2005
Abstract
Mucins are a large family of glycoproteins expressed by many epithelial cells and their malignant counterparts. Much interest has been focused on expression of its members in breast cancer because of their potential role as prognostic indicators and their involvement in cancer therapy. We have examined 1447 cases of invasive breast carcinoma with a long-term follow-up, using tissue microarray (TMA) technology and immunohistochemistry to evaluate the expression profiles of several mucins (MUC1, MUC2, MUC3, MUC4, MUC5AC and MUC6) and to assess their prognostic value. We detected MUC1 expression in 91% of tumours. MUC1 overexpression was associated with a lower grade, smaller tumour size, a higher oestrogen receptor (ER)-positive phenotype and absence of both regional recurrence and distance metastasis. The subcellular localization but not the level of expression had a prognostic value in predicting outcome. The aberrant cytoplasmic and membranous localization of MUC1 was associated with poor outcome compared with apical localization, which is the normal physiological site of expression. MUC2 expression was noticed in only 8.3% of all cases and was restricted to the cytoplasm of the tumour cells. An inverse trend was identified between MUC2 expression and lymph node stage and vascular invasion status. On excluding cases of mucinous carcinoma from the analysis, the inverse association with vascular invasion was still defined and in addition an inverse association with ER status emerged. MUC3 expression was detected in 91% of cases and its expression was associated with increased local recurrence, and lymph node stage. The membranous expression of MUC3 was found to be a potentially poor prognostic feature, with higher grade and poorer Nottingham Prognostic Index (NPI), and negative ER expression. MUC4, MUC5AC and MUC6 were expressed in 95, 37 and 20% of cases, respectively. Apart from an association between MUC4 expression and tumour grade and between MUC6 and ER-negative tumours, no other associations with any clinicopathological variables were found. Apart from the higher expression of MUC2 and MUC6 in mucinous carcinomas, no association was found between the expression of different mucins and tumour type. No association between the level of expression of any of the studied mucins and patient outcomes has been identified. In conclusion, most breast carcinomas express MUC1, MUC3 and MUC4. Among the various mucins expressed in breast cancer, MUC1 and MUC3 are potential prognostic indicators, MUC1 having the strongest relationship with patient outcome.
Publication
Journal: Cancer Research
March/21/1999
Abstract
Intestinal metaplasia is a well-established premalignant condition of the stomach that is characterized by mucin carbohydrate modifications defined by histochemical methods. The purpose of the present study was to see whether the expression of mucin core proteins was modified in the different types of intestinal metaplasia and to evaluate the putative usefulness of mucins as "molecular markers" in this setting. We used a panel of monoclonal antibodies with well-defined specificities to MUC1, MUC2, MUC5AC, and MUC6 to characterize the expression pattern of mucins. In contrast to normal gastric mucosa, the complete form or type I intestinal metaplasia (n = 20) displayed little or no expression of MUC1, MUC5AC, or MUC6 in the metaplastic cells and strong expression of the intestinal mucin MUC2 in the goblet cells of all cases. The incomplete forms of intestinal metaplasia, type II (n = 25) and type III (n = 16), expressed MUC1 and MUC5AC in every case, both in goblet and in columnar cells. MUC6 was also expressed in 16 cases of type II intestinal metaplasia and in 11 cases of type III intestinal metaplasia. The intestinal mucin MUC2 was expressed in every case of incomplete intestinal metaplasia, mostly in goblet cells. The mucin expression profile in the different types of intestinal metaplasia allows the identification of two patterns: one defined by decreased levels of expression of "gastric" mucins (MUC1, MUC5AC, and MUC6) and expression of MUC2 intestinal mucin, which corresponds to type I intestinal metaplasia, and the other defined by coexpression of "gastric mucins" (MUC1, MUC5AC, and MUC6) together with the MUC2 mucin, encompassing types II and III intestinal metaplasia. Our results challenge the classical sequential pathway of intestinal metaplasia (from type I to type III via a type II intermediate step).
Publication
Journal: Frontiers in Bioscience - Landmark
February/28/2002
Abstract
The cells of living organisms in contact with the external environment are constantly attacked by different kinds of substances such as micro-organisms, toxins, and pollutants. With evolution, defense mechanisms, such as the secretion of mucus has been developed. Mucins are the main components of mucus. They are synthesized and secreted by specialized cells of the epithelium and in some case, by non mucin-secreting cells. Little was known about the structure of mucins until a decade ago. This is principally due to heavy glycosylation of mucins, which complicated their analysis. With the application of molecular biological methods, structures of the mucin core peptides (apomucins) are beginning to be elucidated. A total of eleven human mucin (MUC) genes have been identified and numbered in chronological order of their description: MUC1-4, MUC5AC, MUC5B, MUC6-8, and MUC11-12. Of these, the complete cDNA sequence are published only for six mucins MUC1, MUC2, MUC4, MUC5B, MUC5AC, and MUC7. Human mucin genes, in general, show three common features: I) a nucleotide tandem repeat domain; II) a predicted peptide domain containing a high percentage of serines and threonines; III) complex RNA expression. The tandem repeats in mucins make up the majority of the backbone. Related to their structure, mucins can be classified in three distinct sub-families: gel-forming, soluble, and membrane-bound. Each member from one family possesses common characteristics and probably specific functions. For a long time, they were thought to have the unique function of protecting and lubricating the epithelial surfaces. The study of the mucins structure as well as the relationship between structure and function show that mucins also possess other important functions, such as growth, direct implication in the fetal development, the epithelial renewal and differentiation, the epithelial integrity, carcinogenesis, and metastasis. This review presents the actual knowledge on the mucins structure and the best-characterized function related to their structure.
Publication
Journal: Experimental Eye Research
May/19/2004
Abstract
Mucins are vital for maintenance of a healthy, wet ocular surface. Once only thought to be secreted by goblet cells, mucins are now also known to be of the membrane-associated type. Stratified ocular surface epithelia express at their apical-tear fluid surface a repertoire of membrane-associated mucins including MUC1, MUC4, MUC16. These mucins are concentrated on the tips of the microplicae, forming a dense glycocalyx at the epithelial tear film interface. A major mucin of the secretory class is the goblet-cell-derived gel-forming mucin MUC5AC. A small soluble mucin, MUC7, is expressed by the lacrimal gland acini. Our hypothesis of the role/distribution of the secreted and membrane-associated mucins at the ocular surface is that the secreted mucins are soluble in the tear fluid, and are moved about and shunted to the nasolacrimal duct and by the eyelids during blinking. Thus, in the tears, the secreted mucins act as clean-up/debris removing multimeric networks that at the same time, through their hydrophilic nature, hold fluids in place and harbor defense molecules secreted by the lacrimal gland. Membrane-associated mucins, on the other hand, form a dense barrier in the glycocalyx at the epithelial tear film interface. This barrier prevents pathogen penetrance and is a lubricating surface that allows lid epithelia to glide over the corneal epithelia without adherence. The secreted mucins move easily over the glycocalyx mucins because both have anionic character that creates repulsive forces between them. Little is known regarding regulation of expression and glycosylation of mucins by ocular surface epithelia. Since ocular surface drying diseases alter both goblet cell and mucin production, and production and glycosylation of membrane-associated mucins, studies of mucin gene regulation and glycosylation may yield treatment modalities for these diseases.
Publication
Journal: Investigative Ophthalmology and Visual Science
April/28/2002
Abstract
OBJECTIVE
To determine whether the relative amounts of mucin mRNA in the conjunctival epithelium and mucin protein in the tears are altered in patients with Sjögren syndrome compared with healthy individuals.
METHODS
Tear fluid was collected from the inferior fornix of normal subjects (n = 17) and patients with Sjögren syndrome (n = 11) after instillation of 60 microL sterile water onto the ocular surface. Immediately after tear fluid collection, conjunctival epithelium was obtained by filter paper-stripping from the bulbar temporal region for mRNA isolation. Primers to nontandem repeat sequences of the gel-forming mucin MUC5AC and the membrane-spanning mucins MUC1 and MUC4 were used in real-time RT-PCR to determine relative abundance of MUC mRNA in patients with Sjögren syndrome in relation to that of normal subjects. Enzyme-linked immunosorbent assay was performed on neuraminidase-treated tears, using a polyclonal antibody against a synthetic peptide mimicking the deduced amino acid sequence from the D3 region of MUC5AC.
RESULTS
The number of RNA transcripts for the goblet cell-specific mucin MUC5AC in the conjunctival epithelium of patients with Sjögren syndrome was significantly lower than in normal individuals. No significant changes were detected when analyzing the mRNA levels of the mucins expressed by the stratified epithelium of the conjunctiva, MUC1 and MUC4. Protein levels of the goblet cell mucin MUC5AC were significantly reduced in the tear fluid of patients with Sjögren syndrome, corroborating mRNA data obtained using real-time RT-PCR.
CONCLUSIONS
The tear fluid of patients with Sjögren syndrome has reduced levels of the goblet cell-specific mucin MUC5AC, which correlates to decreased levels of conjunctival MUC5AC mRNA. The authors propose that deficiency of MUC5AC mucin in tears constitutes one of the mechanisms responsible for tear film instability in Sjögren syndrome.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/14/2005
Abstract
Mucus hypersecretion is a prominent manifestation in patients with chronic inflammatory airway diseases. MUC5AC mucin is a major component of airway mucus, and its expression is modulated by a TNF-alpha-converting enzyme (TACE)-EGF receptor pathway that can be activated by reactive oxygen species (ROS). Dual oxidase 1 (Duox1), a homologue of glycoprotein p91(phox), is expressed in airway epithelium and generates ROS. We hypothesize that Duox1 activates TACE, cleaving pro-TGF-alpha into soluble TGF-alpha, resulting in mucin expression. To examine this hypothesis, we stimulated both normal human bronchial epithelial cells and NCI-H292 airway epithelial cells with phorbol 12-myristate 13-acetate and with human neutrophil elastase. These stimuli induced TACE activation, TGF-alpha release, and mucin expression, effects that were inhibited by ROS scavengers, implicating ROS in TACE activation. Inhibition of epithelial NADPH oxidase or knockdown of Duox1 expression with small interfering RNA prevented ROS generation, TGF-alpha release, and mucin expression by these stimuli, implicating Duox1 in TACE activation and mucin expression. Furthermore, the PKCdelta/PKC inhibitor rottlerin prevented the effects induced by phorbol 12-myristate 13-acetate and human neutrophil elastase, suggesting that PKCdelta and PKC are involved in Duox1 activation. From these results, we conclude that Duox1 plays a critical role in mucin expression by airway epithelial cells through PKCdelta/PKC-Duox1-ROS-TACE-pro-ligand-EGF receptor cascade.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
May/20/2001
Abstract
Airway hyperresponsiveness (AHR), goblet cell metaplasia, and mucus overproduction are important features of bronchial asthma. To elucidate the molecular mechanisms behind these pulmonary pathologies, we examined for genes preferentially expressed in the lungs of a murine model of allergic asthma by using suppression subtractive hybridization (SSH). We identified a gene called gob-5 that had a selective expression pattern in the airway epithelium with AHR. Here, we show that gob-5, a member of the calcium-activated chloride channel family, is a key molecule in the induction of murine asthma. Intratracheal administration of adenovirus-expressing antisense gob-5 RNA into AHR-model mice efficiently suppressed the asthma phenotype, including AHR and mucus overproduction. In contrast, overexpression of gob-5 in airway epithelia by using an adenoviral vector exacerbated the asthma phenotype. Introduction of either gob-5 or hCLCA1, the human counterpart of gob-5, into the human mucoepidermoid cell line NCI-H292 induced mucus production as well as MUC5AC expression. Our results indicated that gob-5 may play a critical role in murine asthma, and its human counterpart hCLCA1 is therefore a potential target for asthma therapy.
Publication
Journal: Biochemical Journal
March/11/2002
Abstract
Respiratory mucus contains a mixture of gel-forming mucins but the functional significance of these different mucin species is unknown. To help gain a better understanding of mucus in airways we therefore need to ascertain the concentration of each of the gel-forming mucins within respiratory secretions. Thus the aim of this study was to determine the amounts of specific gel-forming mucins directly from solubilized secretions of the airways and purified mucin preparations. We investigated the feasibility of using direct-binding ELISA employing mucin-specific antisera but were unable to obtain reliable data owing to interference with the immobilization of the mucins on the assay surface by 6 M urea and high levels of non-mucin proteins. We therefore developed an alternative approach based on quantitative Western blotting after agarose-gel electrophoresis, which was not subject to these problems. Here we demonstrate that this procedure provides reliable and reproducible data and have employed it to determine the amounts of the MUC2, MUC5AC and MUC5B mucins in saline-induced sputa from healthy airways and spontaneous sputa from asthmatic airways. Additionally we have used this procedure to analyse these glycoproteins in mucin preparations purified from cystic fibrosis (CF) and chronic obstructive pulmonary disease (COPD) mucus. Our findings indicate that MUC5AC and MUC5B are the major oligomeric mucins and that airways mucus contains variable amounts of these glycoproteins. By contrast, the MUC2 mucin comprised, at most, only 2.5% of the weight of the gel-forming mucins, indicating that MUC2 is a minor component in sputum. Finally, we show that the amounts and glycosylated variants of the MUC5AC and MUC5B mucins can be altered significantly in diseased airways with, for instance, an increase in the low-charge form of the MUC5B mucin in CF and COPD mucus.
Publication
Journal: PLoS ONE
March/3/2009
Abstract
BACKGROUND
Bacterial gastroenteritis causes morbidity and mortality in humans worldwide. Murine Citrobacter rodentium infection is a model for gastroenteritis caused by the human pathogens enteropathogenic Escherichia coli and enterohaemorrhagic E. coli. Mucin glycoproteins are the main component of the first barrier that bacteria encounter in the intestinal tract.
RESULTS
Using Immunohistochemistry, we investigated intestinal expression of mucins (Alcian blue/PAS, Muc1, Muc2, Muc4, Muc5AC, Muc13 and Muc3/17) in healthy and C. rodentium infected mice. The majority of the C. rodentium infected mice developed systemic infection and colitis in the mid and distal colon by day 12. C. rodentium bound to the major secreted mucin, Muc2, in vitro, and high numbers of bacteria were found in secreted MUC2 in infected animals in vivo, indicating that mucins may limit bacterial access to the epithelial surface. In the small intestine, caecum and proximal colon, the mucin expression was similar in infected and non-infected animals. In the distal colonic epithelium, all secreted and cell surface mucins decreased with the exception of the Muc1 cell surface mucin which increased after infection (p<0.05). Similarly, during human infection Salmonella St Paul, Campylobacter jejuni and Clostridium difficile induced MUC1 in the colon.
CONCLUSIONS
Major changes in both the cell-surface and secreted mucins occur in response to intestinal infection.
Publication
Journal: American Journal of Physiology - Lung Cellular and Molecular Physiology
September/23/2003
Abstract
In addition to a direct proinflammatory role, IL-13 has been demonstrated to induce a goblet cell metaplastic phenotype in the airway epithelium in vivo. We have studied the direct effects of IL-13 (and IL-4) on well-differentiated, air-liquid interface cultures of human bronchial epithelial cells (HBEs) and provide a quantitative assessment of the development of a mucus hypersecretory phenotype induced by these cytokines. Using Alcian blue staining of goblet cells and immunohistochemical detection of MUC5AC, we found that IL-13 (and IL-4) induced increases in the goblet cell density (GCD) of the HBE cultures. The effects of these cytokines were critically dependent on concentration: 1 ng/ml routinely induced a 5- to 10-fold increase in GCD that was associated with a hypersecretory ion transport phenotype. Paradoxically, 10 ng/ml of either cytokine induced a profound reduction in GCD. Removal of EGF from the culture media or treatment of the cells with AG-1478 [a potent inhibitor of EGF receptor tyrosine kinase (EGFR-TK)] demonstrated that the EGFR-TK pathway was key to the regulation of the basal GCD but that it was not involved in the IL-13-driven increase. The IL-13-driven increase in GCD was, however, sensitive to inhibition of MEK (PD-98059, U-0126), p38 MAPK (SB-202190), and phosphatidylinositol (PtdIns) 3-kinase (LY-294002). These data support the concept that IL-13 is in part able to induce a mucus hypersecretory phenotype through a direct interaction with the airway epithelium and that MAP kinase and PtdIns 3-kinase signaling pathways are involved.
Publication
Journal: PLoS ONE
March/16/2010
Abstract
The bronchioles of the murine lung are lined by a simple columnar epithelium composed of ciliated, Clara, and goblet cells that together mediate barrier function, mucociliary clearance and innate host defense, vital for pulmonary homeostasis. In the present work, we demonstrate that expression of Sox2 in Clara cells is required for the differentiation of ciliated, Clara, and goblet cells that line the bronchioles of the postnatal lung. The gene was selectively deleted in Clara cells utilizing Scgb1a1-Cre, causing the progressive loss of Sox2 in the bronchioles during perinatal and postnatal development. The rate of bronchiolar cell proliferation was decreased and associated with the formation of an undifferentiated, cuboidal-squamous epithelium lacking the expression of markers of Clara cells (Scgb1a1), ciliated cells (FoxJ1 and alpha-tubulin), and goblet cells (Spdef and Muc5AC). By adulthood, bronchiolar cell numbers were decreased and Sox2 was absent in extensive regions of the bronchiolar epithelium, at which time residual Sox2 expression was primarily restricted to selective niches of CGRP staining neuroepithelial cells. Allergen-induced goblet cell differentiation and mucus production was absent in the respiratory epithelium lacking Sox2. In vitro, Sox2 activated promoter-luciferase reporter constructs for differentiation markers characteristic of Clara, ciliated, and goblet cells, Scgb1a1, FoxJ1, and Agr2, respectively. Sox2 physically interacted with Smad3 and inhibited TGF-beta1/Smad3-mediated transcriptional activity in vitro, a pathway that negatively regulates proliferation. Sox2 is required for proliferation and differentiation of Clara cells that serve as the progenitor cells from which Clara, ciliated, and goblet cells are derived.
Publication
Journal: Biochemical Journal
September/25/1996
Abstract
Mucins were extracted from the epithelial surface and the submucosal tissue of human trachea in order to enrich glycoproteins from the goblet cells and the submucosal glands respectively. The macromolecules were purified using density-gradient centrifugation, and the presence of the MUC5AC mucin was investigated using an antiserum raised against a synthetic peptide based on the sequence of the MUC5AC apoprotein. Mucins from the surface epithelium showed a higher reactivity with the antiserum relative to carbohydrate than those from the submucosa, and ion-exchange HPLC of reduced subunits revealed the presence of two distinct mucin populations in the samples. The predominant species from the surface epithelium was more acidic than the major population from the submucosa and showed a strong reactivity with the anti-MUC5AC anti-serum. In contrast, the major portion of the submucosal mucins were less acidic and showed no MUC5AC reactivity, although a more acidic population did react with the antibody. Rate-zonal centrifugation showed that the MUC5AC mucin from the surface epithelium is smaller than the major submucosal mucin, and that both are composed of subunits. Immunolocalization confirmed that the MUC5AC mucin from human trachea originates from the goblet cells and that this glycoprotein is not a major product of the submucosal glands.
Publication
Journal: American Journal of Respiratory Cell and Molecular Biology
May/12/1999
Abstract
Mucus hypersecretion is characteristic of chronic airway diseases. However, regulatory mechanisms are poorly understood. Human airway epithelial cells grown on permeable supports at the air-liquid interface (ALI) develop a mucociliary morphology resembling that found in vivo. Such cultures provide a model for studying secretory cell lineage, differentiation, and function, and may provide insight regarding events leading to mucus hypersecretion. The mucin gene expression profile of well-differentiated human airway epithelial cells in culture has not yet been established. We compared expression of all the currently described mucin genes in poorly differentiated (conventional cultures on plastic) and well-differentiated (ALI) human nasal and bronchial epithelial cells. Differentiation-dependent upregulation of MUC3, MUC5AC, MUC5B, and MUC6 messenger RNA (mRNA) was demonstrated using reverse transcriptase-polymerase chain reaction (RT-PCR). Northern blot analysis showed a similar increase for MUC4 and demonstrated that induction of MUC4 and MUC5B expression depended on retinoic acid. MUC1, MUC2, MUC7, and MUC8 mRNAs were also detected by RT-PCR, but these genes did not appear to be strongly regulated as a function of differentiation. Mucin gene expression was similar in bronchial and nasal cells. Thus, mucociliary differentiation of human airway epithelia in vitro entails upregulation of several mucin genes.
load more...