Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(2K+)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Annual Review of Biochemistry
September/16/2007
Abstract
Functional antibody genes are assembled by V-D-J joining and then diversified by somatic hypermutation. This hypermutation results from stepwise incorporation of single nucleotide substitutions into the V gene, underpinning much of antibody diversity and affinity maturation. Hypermutation is triggered by activation-induced deaminase (AID), an enzyme which catalyzes targeted deamination of deoxycytidine residues in DNA. The pathways used for processing the AID-generated U:G lesions determine the variety of base substitutions observed during somatic hypermutation. Thus, DNA replication across the uracil yields transition mutations at C:G pairs, whereas uracil excision by UNG uracil-DNA glycosylase creates abasic sites that can also yield transversions. Recognition of the U:G mismatch by MSH2/MSH6 triggers a mutagenic patch repair in which polymerase eta plays a major role and leads to mutations at A:T pairs. AID-triggered DNA deamination also underpins immunoglobulin variable (IgV) gene conversion, isotype class switching, and some oncogenic translocations in B cell tumors.
Publication
Journal: Genes and Development
May/30/2000
Abstract
We report the identities of the members of a group of proteins that associate with BRCA1 to form a large complex that we have named BASC (BRCA1-associated genome surveillance complex). This complex includes tumor suppressors and DNA damage repair proteins MSH2, MSH6, MLH1, ATM, BLM, and the RAD50-MRE11-NBS1 protein complex. In addition, DNA replication factor C (RFC), a protein complex that facilitates the loading of PCNA onto DNA, is also part of BASC. We find that BRCA1, the BLM helicase, and the RAD50-MRE11-NBS1 complex colocalize to large nuclear foci that contain PCNA when cells are treated with agents that interfere with DNA synthesis. The association of BRCA1 with MSH2 and MSH6, which are required for transcription-coupled repair, provides a possible explanation for the role of BRCA1 in this pathway. Strikingly, all members of this complex have roles in recognition of abnormal DNA structures or damaged DNA, suggesting that BASC may serve as a sensor for DNA damage. Several of these proteins also have roles in DNA replication-associated repair. Collectively, these results suggest that BRCA1 may function as a coordinator of multiple activities required for maintenance of genomic integrity during the process of DNA replication and point to a central role for BRCA1 in DNA repair.
Publication
Journal: New England Journal of Medicine
May/9/2005
Abstract
BACKGROUND
Germ-line mutations in the mismatch-repair genes MLH1, MSH2, MSH6, and PMS2 lead to the development of the Lynch syndrome (hereditary nonpolyposis colorectal cancer), conferring a strong susceptibility to cancer. We assessed the frequency of such mutations in patients with colorectal cancer and examined strategies for molecular screening to identify patients with the syndrome.
METHODS
Patients with a new diagnosis of colorectal adenocarcinoma at the major hospitals in metropolitan Columbus, Ohio, were eligible for the study. Genotyping of the tumor for microsatellite instability was the primary screening method. Among patients whose screening results were positive for microsatellite instability, we searched for germ-line mutations in the MLH1, MSH2, MSH6, and PMS2 genes with the use of immunohistochemical staining for mismatch-repair proteins, genomic sequencing, and deletion studies. Family members of carriers of the mutations were counseled, and those found to be at risk were offered mutation testing.
RESULTS
Of 1066 patients enrolled in the study, 208 (19.5 percent) had microsatellite instability, and 23 of these patients had a mutation causing the Lynch syndrome (2.2 percent). Among the 23 probands with the Lynch syndrome, 10 were more than 50 years of age and 5 did not meet the Amsterdam criteria or the Bethesda guidelines for the diagnosis of hereditary nonpolyposis colorectal cancer (including the use of age and family history to identify patients at high risk for the Lynch syndrome). Genotyping for microsatellite instability alone and immunohistochemical analysis alone each failed to identify two probands. In the families of 21 of the probands, 117 persons at risk were tested, and of these, 52 had Lynch syndrome mutations and 65 did not.
CONCLUSIONS
Routine molecular screening of patients with colorectal adenocarcinoma for the Lynch syndrome identified mutations in patients and their family members that otherwise would not have been detected. These data suggest that the effectiveness of screening with immunohistochemical analysis of the mismatch-repair proteins would be similar to that of the more complex strategy of genotyping for microsatellite instability.
Publication
Journal: Current Opinion in Genetics and Development
April/13/1999
Abstract
Eukaryotic mismatch repair (MMR) has been shown to require two different heterodimeric complexes of MutS-related proteins: MSH2-MSH3 and MSH2-MSH6. These two complexes have different mispair recognition properties and different abilities to support MMR. Alternative models have been proposed for how these MSH complexes function in MMR. Two different heterodimeric complexes of MutL-related proteins, MLH1-PMS1 (human PMS2) and MLH1-MLH3 (human PMS1) also function in MMR and appear to interact with other MMR proteins including the MSH complexes and replication factors. A number of other proteins have been implicated in MMR, including DNA polymerase delta, RPA (replication protein A), PCNA (proliferating cell nuclear antigen), RFC (replication factor C), Exonuclease 1, FEN1 (RAD27) and the DNA polymerase delta and epsilon associated exonucleases. MMR proteins have also been shown to function in other types of repair and recombination that appear distinct from MMR. MMR proteins function in these processes in conjunction with components of nucleotide excision repair (NER) and, possibly, recombination.
Publication
Journal: Current Biology
April/14/2003
Abstract
BACKGROUND
We have previously proposed that deamination of cytosine to uracil at sites within the immunoglobulin loci by activation-induced deaminase (AID) triggers antibody diversification. The pattern of diversification (phase 1 or 2 hypermutation, gene conversion, or switch recombination) is viewed as depending on the mode of resolution of the dU/dG lesion. A major resolution mode involves excising the uracil, an activity that at least four different enzymes can accomplish in the mouse.
RESULTS
Deficiency in UNG uracil-DNA glycosylase alone is sufficient to distort the pathway of hypermutation in mice. In ung(-/-) animals, mutations at dC/dG pairs are dramatically shifted toward transitions (95%), indicating that the generation of abasic sites (which can induce transversions) has been inhibited. The pattern of substitutions at dA/dT pairs is unaffected. Class-switch recombination is substantially, but not totally, inhibited.
CONCLUSIONS
The results provide strong support for the DNA deamination model for antibody diversification with respect to class-switching as well as hypermutation and, in the context of this model, suggest that (i) UNG is the major mouse DNA glycosylase responsible for processing the programmed dU/dG lesions within the immunoglobulin locus; (ii) the second (dA/dT-biased) phase of mutation is probably triggered by recognition of the initiating dU/dG lesion; and (iii) switch recombination largely proceeds via formation of an abasic site, although (iv) an UNG-independent pathway of switch recombination exists, which could reflect action by another uracil-DNA glycosylase but might alternatively be explained by a distinct pathway of resolution, for example, one involving MSH2/MSH6 recognition of the dU/dG lesion.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/8/2012
Abstract
Inherited loss-of-function mutations in BRCA1 and BRCA2 and other tumor suppressor genes predispose to ovarian carcinomas, but the overall burden of disease due to inherited mutations is not known. Using targeted capture and massively parallel genomic sequencing, we screened for germ-line mutations in 21 tumor suppressor genes in genomic DNA from women with primary ovarian, peritoneal, or fallopian tube carcinoma. Subjects were consecutively enrolled at diagnosis and not selected for age or family history. All classes of mutations, including point mutations and large genomic deletions and insertions, were detected. Of 360 subjects, 24% carried germ-line loss-of-function mutations: 18% in BRCA1 or BRCA2 and 6% in BARD1, BRIP1, CHEK2, MRE11A, MSH6, NBN, PALB2, RAD50, RAD51C, or TP53. Six of these genes were not previously implicated in inherited ovarian carcinoma. Primary carcinomas were generally characterized by genomic loss of normal alleles of the mutant genes. Of women with inherited mutations, >30% had no family history of breast or ovarian carcinoma, and >35% were 60 y or older at diagnosis. More patients with ovarian carcinoma carry cancer-predisposing mutations and in more genes than previously appreciated. Comprehensive genetic testing for inherited carcinoma is warranted for all women with ovarian, peritoneal, or fallopian tube carcinoma, regardless of age or family history. Clinical genetic testing is currently done gene by gene, with each test costing thousands of dollars. In contrast, massively parallel sequencing allows such testing for many genes simultaneously at low cost.
Publication
Journal: Nature
November/6/2000
Abstract
DNA mismatch repair ensures genomic integrity on DNA replication. Recognition of a DNA mismatch by a dimeric MutS protein initiates a cascade of reactions and results in repair of the newly synthesized strand; however, details of the molecular mechanism remain controversial. Here we present the crystal structure at 2.2 A of MutS from Escherichia coli bound to a G x T mismatch. The two MutS monomers have different conformations and form a heterodimer at the structural level. Only one monomer recognizes the mismatch specifically and has ADP bound. Mismatch recognition occurs by extensive minor groove interactions causing unusual base pairing and kinking of the DNA. Nonspecific major groove DNA-binding domains from both monomers embrace the DNA in a clamp-like structure. The interleaved nucleotide-binding sites are located far from the DNA. Mutations in human MutS alpha (MSH2/MSH6) that lead to hereditary predisposition for cancer, such as hereditary non-polyposis colorectal cancer, can be mapped to this crystal structure.
Publication
Journal: Genes and Development
May/1/1996
Abstract
Saccharomyces cerevisiae encodes six genes, MSH1-6, which encode proteins related to the bacterial MutS protein. In this study the role of MSH2, MSH3, and MSH6 in mismatch repair has been examined by measuring the rate of accumulating mutations and mutation spectrum in strains containing different combinations of msh2, msh3, and msh6 mutations and by studying the physical interaction between the MSH2 protein and the MSH3 and MSH6 proteins. The results indicate that S. cerevisiae has two pathways of MSH2-dependent mismatch repair: one that recognized single-base mispairs and requires MSH2 and MSH6, and a second that recognizes insertion/deletion mispairs and requires a combination of either MSH2 and MSH6 or MSH2 and MSH3. The redundancy of MSH3 and MSH6 explains the greater prevalence of hmsh2 mutations in HNPCC families and suggests how the role of hmsh3 and hmsh6 mutations in cancer susceptibility could be analyzed.
Publication
Journal: Molecular Cell
December/13/2004
Abstract
AID-mediated deamination of dC residues within the immunoglobulin locus generates dU:dG lesions whose resolution leads to class-switch recombination and somatic hypermutation. The dU:dG pair is a mismatch and comprises a base foreign to DNA and is, thus, recognized by proteins from both base excision (uracil-DNA glycosylase, UNG) and mismatch recognition (MSH2/MSH6) pathways. Strikingly, while antibody diversification is perturbed by single deficiency in either UNG or MSH2, combined UNG/MSH2 deficiency leads to a total ablation both of switch recombination and of IgV hypermutation at dA:dT pairs. The initiating dU:dG lesions appear not to be recognized and are simply replicated over. The results indicate that the major pathway for switch recombination occurs through uracil excision with mismatch recognition of dU:dG providing a backup; the second phase of hypermutation (essentially introducing mutations solely at dA:dT pairs) is triggered by mismatch recognition of the dU:dG lesion with uracil excision providing a backup.
Publication
Journal: JAMA - Journal of the American Medical Association
June/9/2011
Abstract
BACKGROUND
Providing accurate estimates of cancer risks is a major challenge in the clinical management of Lynch syndrome.
OBJECTIVE
To estimate the age-specific cumulative risks of developing various tumors using a large series of families with mutations of the MLH1, MSH2, and MSH6 genes.
METHODS
Families with Lynch syndrome enrolled between January 1, 2006, and December 31, 2009, from 40 French cancer genetics clinics participating in the ERISCAM (Estimation des Risques de Cancer chez les porteurs de mutation des gènes MMR) study; 537 families with segregating mutated genes (248 with MLH1; 256 with MSH2; and 33 with MSH6) were analyzed.
METHODS
Age-specific cumulative cancer risks estimated using the genotype restricted likelihood (GRL) method accounting for ascertainment bias.
RESULTS
Significant differences in estimated cumulative cancer risk were found between the 3 mutated genes (P = .01). The estimated cumulative risks of colorectal cancer by age 70 years were 41% (95% confidence intervals [CI], 25%-70%) for MLH1 mutation carriers, 48% (95% CI, 30%-77%) for MSH2, and 12% (95% CI, 8%-22%) for MSH6. For endometrial cancer, corresponding risks were 54% (95% CI, 20%-80%), 21% (95% CI, 8%-77%), and 16% (95% CI, 8%-32%). For ovarian cancer, they were 20% (95% CI, 1%-65%), 24% (95% CI, 3%-52%), and 1% (95% CI, 0%-3%). The estimated cumulative risks by age 40 years did not exceed 2% (95% CI, 0%-7%) for endometrial cancer nor 1% (95% CI, 0%-3%) for ovarian cancer, irrespective of the gene. The estimated lifetime risks for other tumor types did not exceed 3% with any of the gene mutations.
CONCLUSIONS
MSH6 mutations are associated with markedly lower cancer risks than MLH1 or MSH2 mutations. Lifetime ovarian and endometrial cancer risks associated with MLH1 or MSH2 mutations were high but do not increase appreciably until after the age of 40 years.
Publication
Journal: JAMA - Journal of the American Medical Association
September/28/2006
Abstract
BACKGROUND
About 2% of all colorectal cancer occurs in the context of the autosomal dominantly inherited Lynch syndrome, which is due to mutations in mismatch repair genes. Potential risk-reducing interventions are recommended for individuals known to have these mutations.
OBJECTIVE
To review cancer risks and data on screening efficacy in the context of Lynch syndrome (hereditary nonpolyposis colorectal cancer) and to provide recommendations for clinical management for affected families, based on available evidence and expert opinion.
METHODS
A systematic literature search using PubMed and the Cochrane Database of Systematic Reviews, reference list review of retrieved articles, manual searches of relevant articles, and direct communication with other researchers in the field. Search terms included hereditary non-polyposis colon cancer, Lynch syndrome, microsatellite instability, mismatch repair genes, and terms related to the biology of Lynch syndrome. Only peer-reviewed, full-text, English-language articles concerning human subjects published between January 1, 1996, and February 2006 were included. The US Preventive Services Task Force's 2-tier system was adapted to describe the quality of evidence and to assign strength to the recommendations for each guideline.
RESULTS
The evidence supports colonoscopic surveillance for individuals with Lynch syndrome, although the optimal age at initiation and frequency of examinations is unresolved. Colonoscopy is recommended every 1 to 2 years starting at ages 20 to 25 years (age 30 years for those with MSH6 mutations), or 10 years younger than the youngest age of the person diagnosed in the family. While fully acknowledging absence of demonstrated efficacy, the following are also recommended annually: endometrial sampling and transvaginal ultrasound of the uterus and ovaries (ages 30-35 years); urinalysis with cytology (ages 25-35 years); history, examination, review of systems, education and genetic counseling regarding Lynch syndrome (age 21 years). Regular colonoscopy was favored for at-risk persons without colorectal neoplasia. For individuals who will undergo surgical resection of a colon cancer, subtotal colectomy is favored. Evidence supports the efficacy of prophylactic hysterectomy and oophorectomy.
CONCLUSIONS
The past 10 years have seen major advances in the understanding of Lynch syndrome. Current recommendations regarding cancer screening and prevention require careful consultation between clinicians, clinical cancer genetic services, and well-informed patients.
Publication
Journal: Journal of Medical Genetics
January/12/2000
Abstract
Familial colorectal cancer (CRC) is a major public health problem by virtue of its relatively high frequency. Some 15-20% of all CRCs are familial. Among these, familial adenomatous polyposis (FAP), caused by germline mutations in the APC gene, accounts for less than 1%. Hereditary non-polyposis colorectal cancer (HNPCC), also called Lynch syndrome, accounts for approximately 5-8% of all CRC patients. Among these, some 3% are mutation positive, that is, caused by germline mutations in the DNA mismatch repair genes that have so far been implicated (MLH1, MSH2, MSH6, PMS1, and PMS2). Most of the remaining patients belonging to HNPCC or HNPCC-like families are still molecularly unexplained. Among the remaining familial CRCs, a large proportion is probably caused by gene mutations and polymorphisms of low penetrance, of which the I1307K polymorphism in the APC gene is a prime example. Molecular genetic findings have enabled hereditary CRC to be divided into two groups: (1) tumours that show microsatellite instability (MSI), occur more frequently in the right colon, have diploid DNA, harbour characteristic mutations such as transforming growth factor beta type II receptor and BAX, and behave indolently, of which HNPCC is an example; and (2) tumours with chromosomal instability (CIN), which tend to be left sided, show aneuploid DNA, harbour characteristic mutations such as K-ras, APC, and p53, and behave aggressively, of which FAP is an example. This review focuses most heavily on the clinical features, pathology, molecular genetics, surveillance, and management including prophylactic surgery in HNPCC. Because of the difficulty in diagnosing HNPCC, a detailed differential diagnosis of the several hereditary CRC variants is provided. The extant genetic and phenotypic heterogeneity in CRC leads to the conclusion that it is no longer appropriate to discuss the genetics of CRC without defining the specific hereditary CRC syndrome of concern. Therefore, it is important to ascertain cancer of all anatomical sites, as well as non-cancer phenotypic stigmata (such as the perioral and mucosal pigmentations in Peutz-Jeghers syndrome), when taking a family cancer history.
Publication
Journal: Nature Reviews Clinical Oncology
June/2/2010
Abstract
Microsatellite instability (MSI) is the molecular fingerprint of a deficient mismatch repair system. Approximately 15% of colorectal cancers (CRC) display MSI owing either to epigenetic silencing of MLH1 or a germline mutation in one of the mismatch repair genes MLH1, MSH2, MSH6 or PMS2. Methods to detect MSI are well established and routinely incorporated into clinical practice. A clinical and molecular profile of MSI tumors has been described, leading to the concept of an MSI phenotype in CRC. Studies have confirmed that MSI tumors have a better prognosis than microsatellite stable CRC, but MSI cancers do not necessarily have the same response to the chemotherapeutic strategies used to treat microsatellite stable tumors. Specifically, stage II MSI tumors might not benefit from 5-fluorouracil-based adjuvant chemotherapy regimens. New data suggest possible advantages of irinotecan-based regimens, but these findings require further clarification. Characterization of the molecular basis of MSI in CRC is underway and initial results show that mutations in genes encoding kinases and candidate genes with microsatellite tracts are over-represented in MSI tumors. Transcriptome expression profiles of MSI tumors and systems biology approaches are providing the opportunity to develop targeted therapeutics for MSI CRC.
Publication
Journal: Molecular and Cellular Biology
July/7/2008
Abstract
FANCJ mutations are associated with breast cancer and genetically linked to the bone marrow disease Fanconi anemia (FA). The genomic instability of FA-J mutant cells suggests that FANCJ helicase functions in the replicational stress response. A putative helicase with sequence similarity to FANCJ in Caenorhabditis elegans (DOG-1) and mouse (RTEL) is required for poly(G) tract maintenance, suggesting its involvement in the resolution of alternate DNA structures that impede replication. Under physiological conditions, guanine-rich sequences spontaneously assemble into four-stranded structures (G quadruplexes [G4]) that influence genomic stability. FANCJ unwound G4 DNA substrates in an ATPase-dependent manner. FANCJ G4 unwinding is specific since another superfamily 2 helicase, RECQ1, failed to unwind all G4 substrates tested under conditions in which the helicase unwound duplex DNA. Replication protein A stimulated FANCJ G4 unwinding, whereas the mismatch repair complex MSH2/MSH6 inhibited this activity. FANCJ-depleted cells treated with the G4-interactive compound telomestatin displayed impaired proliferation and elevated levels of apoptosis and DNA damage compared to small interfering RNA control cells, suggesting that G4 DNA is a physiological substrate of FANCJ. Although the FA pathway has been classically described in terms of interstrand cross-link (ICL) repair, the cellular defects associated with FANCJ mutation extend beyond the reduced ability to repair ICLs and involve other types of DNA structural roadblocks to replication.
Publication
Journal: Molecular Cell
July/31/2007
Abstract
Mismatch repair (MMR) ensures the fidelity of DNA replication, initiates the cellular response to certain classes of DNA damage, and has been implicated in the generation of immune diversity. Each of these functions depends on MutSalpha (MSH2*MSH6 heterodimer). Inactivation of this protein complex is responsible for tumor development in about half of known hereditary nonpolyposis colorectal cancer kindreds and also occurs in sporadic tumors in a variety of tissues. Here, we describe a series of crystal structures of human MutSalpha bound to different DNA substrates, each known to elicit one of the diverse biological responses of the MMR pathway. All lesions are recognized in a similar manner, indicating that diversity of MutSalpha-dependent responses to DNA lesions is generated in events downstream of this lesion recognition step. This study also allows rigorous mapping of cancer-causing mutations and furthermore suggests structural pathways for allosteric communication between different regions within the heterodimer.
Publication
Journal: Journal of Medical Genetics
June/25/2007
Abstract
Lynch syndrome (hereditary non-polyposis colorectal cancer) is characterised by the development of colorectal cancer, endometrial cancer and various other cancers, and is caused by a mutation in one of the mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. The discovery of these genes, 15 years ago, has led to the identification of large numbers of affected families. In April 2006, a workshop was organised by a group of European experts in hereditary gastrointestinal cancer (the Mallorca-group), aiming to establish guidelines for the clinical management of Lynch syndrome. 21 experts from nine European countries participated in this workshop. Prior to the meeting, various participants prepared the key management issues of debate according to the latest publications. A systematic literature search using Pubmed and the Cochrane Database of Systematic Reviews reference lists of retrieved articles and manual searches of relevant articles was performed. During the workshop, all recommendations were discussed in detail. Because most of the studies that form the basis for the recommendations were descriptive and/or retrospective in nature, many of them were based on expert opinion. The guidelines described in this manuscript may be helpful for the appropriate management of families with Lynch syndrome. Prospective controlled studies should be undertaken to improve further the care of these families.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
January/15/1997
Abstract
The genetic and biochemical properties of three human MutS homologues, hMSH2, hMSH3, and hMSH6, have been examined. The full-length hMSH6 cDNA and genomic locus were isolated and characterized, and it was demonstrated that the hMSH6 gene consisted of 10 exons and mapped to chromosome 2p15-16. The hMSH3 cDNA was in some cases found to contain a 27-bp deletion resulting in a loss of nine amino acids, depending on the individual from which the cDNA was isolated. hMSH2, hMSH3, and hMSH6 all showed similar tissue-specific expression patterns. hMSH2 protein formed a complex with both hMSH3 and hMSH6 proteins, similar to protein complexes demonstrated by studies of the Saccharomyces cerevisiae MSH2, MSH3, and MSH6. hMSH2 was also found to form a homomultimer complex, but neither hMSH3 nor hMSH6 appear to interact with themselves or each other. Analysis of the mismatched nucleotide-binding specificity of the hMSH2-hMSH3 and hMSH2-hMSH6 protein complexes showed that they have overlapping but not identical binding specificity. These results help to explain the distribution of mutations in different mismatch-repair genes seen in hereditary nonpolyposis colon cancer.
Publication
Journal: Journal of Biological Chemistry
January/25/2001
Abstract
Poly(ADP-ribose) is formed in possibly all multicellular organisms by a familiy of poly(ADP-ribose) polymerases (PARPs). PARP-1, the best understood and until recently the only known member of this family, is a DNA damage signal protein catalyzing its automodification with multiple, variably sized ADP-ribose polymers that may contain up to 200 residues and several branching points. Through these polymers, PARP-1 can interact noncovalently with other proteins and alter their functions. Here we report the discovery of a poly(ADP-ribose)-binding sequence motif in several important DNA damage checkpoint proteins. The 20-amino acid motif contains two conserved regions: (i) a cluster rich in basic amino acids and (ii) a pattern of hydrophobic amino acids interspersed with basic residues. Using a combination of alanine scanning, polymer blot analysis, and photoaffinity labeling, we have identified poly(ADP-ribose)-binding sites in the following proteins: p53, p21(CIP1/WAF1), xeroderma pigmentosum group A complementing protein, MSH6, DNA ligase III, XRCC1, DNA polymerase epsilon, DNA-PK(CS), Ku70, NF-kappaB, inducible nitric-oxide synthase, caspase-activated DNase, and telomerase. The poly(ADP-ribose)-binding motif was found to overlap with five important functional domains responsible for (i) protein-protein interactions, (ii) DNA binding, (iii) nuclear localization, (iv) nuclear export, and (v) protein degradation. Thus, PARPs may target specific signal network proteins via poly(ADP-ribose) and regulate their domain functions.
Publication
Journal: Disease Markers
May/4/2005
Abstract
In 1994, the International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer (ICG-HNPCC) established an international database of mutations identified in families with Lynch (HNPCC) syndrome. The data are publicly available at http://www.nfdht.nl. The information stored in the database was systematically analyzed in 1997, and at that time, 126 different predisposing mutations were reported affecting the DNA mismatch repair genes MSH2 and MLH1 and occurring in 202 families. In 2003, the ICG-HNPCC and the Leeds Castle Polyposis Group (LCPG) merged into a new group, INSiGHT (International Society for Gastrointestinal Hereditary Tumors). The present update of the database of DNA mismatch repair gene mutations of INSiGHT includes 448 mutations that primarily involve MLH1 (50%), MSH2 (39%), and MSH6 (7%) and occur in 748 families from different parts of the world.
Publication
Journal: Cancer Research
September/27/2006
Abstract
Endometrial cancer is the most common cancer in women with Lynch syndrome. The identification of individuals with Lynch syndrome is desirable because they can benefit from increased cancer surveillance. The purpose of this study was to determine the feasibility and desirability of molecular screening for Lynch syndrome in all endometrial cancer patients. Unselected endometrial cancer patients (N = 543) were studied. All tumors underwent microsatellite instability (MSI) testing. Patients with MSI-positive tumors underwent testing for germ line mutations in MLH1, MSH2, MSH6, and PMS2. Of 543 tumors studied, 118 (21.7%) were MSI positive (98 of 118 MSI high and 20 of 118 MSI low). All 118 patients with MSI-positive tumors had mutation testing, and nine of them had deleterious germ line mutations (one MLH1, three MSH2, and five MSH6). In addition, one case with an MSI-negative tumor had abnormal MSH6 immunohistochemical staining and was subsequently found to have a mutation in MSH6. Immunohistochemical staining was consistent with the mutation result in all seven truncating mutation-positive cases but was not consistent in two of the three missense mutation cases. We conclude that in central Ohio, at least 1.8% (95% confidence interval, 0.9-3.5%) of newly diagnosed endometrial cancer patients had Lynch syndrome. Seven of the 10 Lynch syndrome patients did not meet any published criteria for hereditary nonpolyposis colorectal cancer, and six of them were diagnosed at age >50. Studying all endometrial cancer patients for Lynch syndrome using a combination of MSI and immunohistochemistry for molecular prescreening followed by gene sequencing and deletion analysis is feasible and may be desirable.
Publication
Journal: Nature Genetics
December/3/1997
Pulse
Views:
8
Posts:
No posts
Rating:
Not rated
Publication
Journal: Molecular and Cellular Biology
May/14/1997
Abstract
We examined the stability of microsatellites of different repeat unit lengths in Saccharomyces cerevisiae strains deficient in DNA mismatch repair. The msh2 and msh3 mutations destabilized microsatellites with repeat units of 1, 2, 4, 5, and 8 bp; a poly(G) tract of 18 bp was destabilized several thousand-fold by the msh2 mutation and about 100-fold by msh3. The msh6 mutations destabilized microsatellites with repeat units of 1 and 2 bp but had no effect on microsatellites with larger repeats. These results argue that coding sequences containing repetitive DNA tracts will be preferred target sites for mutations in human tumors with mismatch repair defects. We find that the DNA mismatch repair genes destabilize microsatellites with repeat units from 1 to 13 bp but have no effect on the stability of minisatellites with repeat units of 16 or 20 bp. Our data also suggest that displaced loops on the nascent strand, resulting from DNA polymerase slippage, are repaired differently than loops on the template strand.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
September/16/1997
Abstract
When gene conversion is initiated by a double-strand break (DSB), any nonhomologous DNA that may be present at the ends must be removed before new DNA synthesis can be initiated. In Saccharomyces cerevisiae, removal of nonhomologous ends depends not only on the nucleotide excision repair endonuclease Rad1/Rad10 but also on Msh2 and Msh3, two proteins that are required to correct mismatched bp. These proteins have no effect when DSB ends are homologous to the donor, either in the kinetics of recombination or in the proportion of gene conversions associated with crossing-over. A second DSB repair pathway, single-strand annealing also requires Rad1/Rad10 and Msh2/Msh3, but reveals a difference in their roles. When the flanking homologous regions that anneal are 205 bp, the requirement for Msh2/Msh3 is as great as for Rad1/Rad10; but when the annealing partners are 1,170 bp, Msh2/Msh3 have little effect, while Rad1/Rad10 are still required. Mismatch repair proteins Msh6, Pms1, and Mlh1 are not required. We suggest Msh2 and Msh3 recognize not only heteroduplex loops and mismatched bp, but also branched DNA structures with a free 3' tail.
Publication
Journal: Gut
July/1/2013
Abstract
Lynch syndrome (LS) is characterised by the development of colorectal cancer, endometrial cancer and various other cancers, and is caused by a mutation in one of the mismatch repair genes: MLH1, MSH2, MSH6 or PMS2. In 2007, a group of European experts (the Mallorca group) published guidelines for the clinical management of LS. Since then substantial new information has become available necessitating an update of the guidelines. In 2011 and 2012 workshops were organised in Palma de Mallorca. A total of 35 specialists from 13 countries participated in the meetings. The first step was to formulate important clinical questions. Then a systematic literature search was performed using the Pubmed database and manual searches of relevant articles. During the workshops the outcome of the literature search was discussed in detail. The guidelines described in this paper may be helpful for the appropriate management of families with LS. Prospective controlled studies should be undertaken to improve further the care of these families.
load more...