Citations
All
Search in:AllTitleAbstractAuthor name
Publications
(310)
Patents
Grants
Pathways
Clinical trials
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
August/25/2009
Abstract
The pseudostratified epithelium of the mouse trachea and human airways contains a population of basal cells expressing Trp-63 (p63) and cytokeratins 5 (Krt5) and Krt14. Using a KRT5-CreER(T2) transgenic mouse line for lineage tracing, we show that basal cells generate differentiated cells during postnatal growth and in the adult during both steady state and epithelial repair. We have fractionated mouse basal cells by FACS and identified 627 genes preferentially expressed in a basal subpopulation vs. non-BCs. Analysis reveals potential mechanisms regulating basal cells and allows comparison with other epithelial stem cells. To study basal cell behaviors, we describe a simple in vitro clonal sphere-forming assay in which mouse basal cells self-renew and generate luminal cells, including differentiated ciliated cells, in the absence of stroma. The transcriptional profile identified 2 cell-surface markers, ITGA6 and NGFR, which can be used in combination to purify human lung basal cells by FACS. Like those from the mouse trachea, human airway basal cells both self-renew and generate luminal daughters in the sphere-forming assay.
Publication
Journal: Proceedings of the National Academy of Sciences of the United States of America
March/29/2012
Abstract
Current clinical judgment in bladder cancer (BC) relies primarily on pathological stage and grade. We investigated whether a molecular classification of tumor cell differentiation, based on a developmental biology approach, can provide additional prognostic information. Exploiting large preexisting gene-expression databases, we developed a biologically supervised computational model to predict markers that correspond with BC differentiation. To provide mechanistic insight, we assessed relative tumorigenicity and differentiation potential via xenotransplantation. We then correlated the prognostic utility of the identified markers to outcomes within gene expression and formalin-fixed paraffin-embedded (FFPE) tissue datasets. Our data indicate that BC can be subclassified into three subtypes, on the basis of their differentiation states: basal, intermediate, and differentiated, where only the most primitive tumor cell subpopulation within each subtype is capable of generating xenograft tumors and recapitulating downstream populations. We found that keratin 14 (KRT14) marks the most primitive differentiation state that precedes KRT5 and KRT20 expression. Furthermore, KRT14 expression is consistently associated with worse prognosis in both univariate and multivariate analyses. We identify here three distinct BC subtypes on the basis of their differentiation states, each harboring a unique tumor-initiating population.
Publication
Journal: Developmental Biology
January/13/2010
Abstract
Merkel cells are specialized cells in the skin that are important for proper neural encoding of light touch stimuli. Conflicting evidence suggests that these cells are lineally descended from either the skin or the neural crest. To address this question, we used epidermal (Krt14(Cre)) and neural crest (Wnt1(Cre)) Cre-driver lines to conditionally delete Atoh1 specifically from the skin or neural crest lineages, respectively, of mice. Deletion of Atoh1 from the skin lineage resulted in loss of Merkel cells from all regions of the skin, while deletion from the neural crest lineage had no effect on this cell population. Thus, mammalian Merkel cells are derived from the skin lineage.
Publication
Journal: Cancer Research
May/30/2002
Abstract
DNA copy number gains and amplifications at 17q are frequent in gastriccancer, yet systematic analyses of the 17q amplicon have not been performed. In this study, we carried out a comprehensive analysis of copy number and expression levels of 636 chromosome 17-specific genes in gastric cancer by using a custom-made chromosome 17-specific cDNA microarray. Analysis of DNA copy number changes by comparative genomic hybridization on cDNA microarray revealed increased copy numbers of 11 known genes (ERBB2, TOP2A, GRB7, ACLY, PIP5K2B, MPRL45, MKP-L, LHX1, MLN51, MLN64, and RPL27) and seven expressed sequence tags (ESTs) that mapped to 17q12-q21 region. To investigate the genes transcribed at the 17q, we performed gene expression analyses on an identical cDNA microarray. Our expression analysis showed overexpression of 8 genes (ERBB2, TOP2A, GRB2, AOC3, AP2B1, KRT14, JUP, and ITGA3) and two ESTs. Of the commonly amplified transcripts, an uncharacterized EST AA552509 and the TOP2A gene were most frequently overexpressed in 82% of the samples. Additional studies will be initiated to understand the possible biological and clinical significance of these genes in gastric cancer development and progression.
Publication
Journal: Clinical and Experimental Metastasis
April/1/2009
Abstract
The most important predictor of prognosis in breast cancer is lymph node status, yet little is known about molecular changes associated with lymph node metastasis. Here, gene expression analysis was performed on primary breast (PBT) and corresponding metastatic lymph node (MLN) tumors to identify molecular signatures associated with nodal metastasis. RNA was isolated after laser microdissection from frozen PBT and MLN from 20 patients with positive lymph nodes and hybridized to the microarray chips. Differential expression was determined using Mann-Whitney testing; Bonferroni corrected P values of 0.05 and 0.001 were calculated. Results were validated using TaqMan assays. Fifty-one genes were differentially expressed (P < 1 x 10(-5), less than twofold differences) between the PBT and paired MLN; 13 with significantly higher expression in the MLN and 38 in the PBT. qRT-PCR validated the differential expression of 40/51 genes. Of the 40 validated genes, NTS and PAX5 were found to have >100-fold higher expression in MLT while COL11A1, KRT14, MMP13, TAC1 and WNT2 had >100-fold higher expression in PBT. Gene expression differences between PBT and MLN suggests that expression of a unique set of genes is required for successful lymph node colonization. Genes expressed at higher levels in PBT are involved in degradation of the extracellular matrix, enabling cells with metastatic potential to disseminate, while genes expressed at higher levels in metastases are involved in transcription, signal transduction and immune response, providing cells with proliferation and survival advantages. These data improve our understanding of the biological processes involved in successful metastatis and provide new targets to arrest tumor cell dissemination and metastatic colonization.
Publication
Journal: American Journal of Pathology
March/11/2014
Abstract
We recently defined molecular subtypes of urothelial carcinomas according to whole genome gene expression. Herein we describe molecular pathologic characterization of the subtypes using 20 genes and IHC of 237 tumors. In addition to differences in expression levels, the subtypes show important differences in stratification of protein expression. The selected genes included biological features central to bladder cancer biology, eg, cell cycle activity, cellular architecture, cell-cell interactions, and key receptor tyrosine kinases. We show that the urobasal (Uro) A subtype shares features with normal urothelium such as keratin 5 (KRT5), P-cadherin (P-Cad), and epidermal growth factor receptor (EGFR) expression confined to basal cells, and cell cycle activity (CCNB1) restricted to the tumor-stroma interface. In contrast, the squamous cell cancer-like (SCCL) subtype uniformly expresses KRT5, P-Cad, EGFR, KRT14, and cell cycle genes throughout the tumor parenchyma. The genomically unstable subtype shows proliferation throughout the tumor parenchyma and high ERBB2 and E-Cad expression but absence of KRT5, P-Cad, and EGFR expression. UroB tumors demonstrate features shared by both UroA and SCCL subtypes. A major transition in tumor progression seems to be loss of dependency of stromal interaction for proliferation. We present a simple IHC/histology-based classifier that is easy to implement as a standard pathologic evaluation to differentiate the three major subtypes: urobasal, genomically unstable, and SCCL. These three major subtypes exhibit important prognostic differences.
Publication
Journal: Bladder Cancer
February/19/2017
Abstract
The advent of Omics technologies has been key to the molecular subclassification of urothelial bladder cancer. Several groups have used different strategies to this aim, with partially overlapping findings. The meeting at the Spanish National Cancer Research Center-CNIO was held to discuss such classifications and reach consensus where appropriate. After updated presentations on the work performed by the teams attending the meeting, a consensus was reached regarding the existence of a group of Basal-Squamous-like tumors - designated BASQ - charaterized the high expression of KRT5/6 and KRT14 and low/undetectable expression of FOXA1 and GATA3. An additional tumor subgroup with urothelial differentiation features was recognized whose optimal molecular definition is required. For other subtypes described, more work is needed to determine how robust they are and how to best define them at the molecular level.
Publication
Journal: Scientific Reports
November/19/2015
Abstract
The differentiated human airway epithelium consists of different cell types forming a polarized and pseudostratified epithelium. This is dramatically altered in chronic obstructive pulmonary disease (COPD), characterized by basal and goblet cell hyperplasia, and squamous cell metaplasia. The effect of cigarette smoke on human bronchial epithelial cell (HBEC) differentiation remains to be elucidated. We analysed whether cigarette smoke extract (CSE) affected primary (p)HBEC differentiation and function. pHBEC were differentiated at the air-liquid interface (ALI) and differentiation was quantified after 7, 14, 21, or 28 days by assessing acetylated tubulin, CC10, or MUC5AC for ciliated, Clara, or goblet cells, respectively. Exposure of differentiating pHBEC to CSE impaired epithelial barrier formation, as assessed by resistance measurements (TEER). Importantly, CSE exposure significantly reduced the number of ciliated cells, while it increased the number of Clara and goblet cells. CSE-dependent cell number changes were reflected by a reduction of acetylated tubulin levels, an increased expression of the basal cell marker KRT14, and increased secretion of CC10, but not by changes in transcript levels of CC10, MUC5AC, or FOXJ1. Our data demonstrate that cigarette smoke specifically alters the cellular composition of the airway epithelium by affecting basal cell differentiation in a post-transcriptional manner.
Publication
Journal: The International journal of developmental biology
September/1/2009
Abstract
The control of hair growth in the adult mammalian coat is a fascinating topic which has just begun to be explored with molecular genetic tools. Complex hair cycle domains and regenerative hair waves are present in normal adult >> 2 month) mice, but more apparent in mutants with cyclic alopecia phenotypes. Each hair cycle domain consists of initiation site(s), a propagating wave and boundaries. By analyzing the dynamics of hair growth, time required for regeneration after plucking, in situ hybridization and reporter activity, we showed that there is oscillation of intra-follicular Wnt signaling which is synchronous with hair cycling, and there is oscillation of dermal bone morphogenetic protein (BMP) signaling which is asynchronous with hair cycling. The interactions of these two rhythms lead to the recognition of refractory and competent phases in the telogen, and autonomous and propagating phases in the anagen. Boundaries form when propagating anagen waves reach follicles which are in refractory telogen. Experiments showed that Krt14-Nog mice have shortened refractory telogen and simplified wave dynamics. Krt14-Nog skin grafts exhibit non-autonomous interactions with surrounding host skin. Implantation of BMP coated beads into competent telogen skin prevents hair wave propagation around the bead. Thus, we have developed a new molecular understanding of the classic early concepts of inhibitory "chalone", suggesting that stem cells within the hair follicle micro-environment, or other organs, are subject to a higher level of macro-environmental regulation. Such a novel understanding has important implications in the field of regenerative medicine. The unexpected links with Bmp2 expression in subcutaneous adipocytes has implications for systems biology and Evo-Devo.
Publication
Journal: Nature Communications
September/21/2017
Abstract
The urothelium is a specialized epithelium that lines the urinary tract. It consists of three different cell types, namely, basal, intermediate and superficial cells arranged in relatively distinct cell layers. Normally, quiescent, it regenerates fast upon injury, but the regeneration process is not fully understood. Although several reports have indicated the existence of progenitors, their identity and exact topology, as well as their role in key processes such as tissue regeneration and carcinogenesis have not been clarified. Here we show that a minor subpopulation of basal cells, characterized by the expression of keratin 14, possesses self-renewal capacity and also gives rise to all cell types of the urothelium during natural and injury-induced regeneration. Moreover, these cells represent cells of origin of urothelial cancer. Our findings support the hypothesis of basally located progenitors with profound roles in urothelial homoeostasis.
load more...